9. [11 points] A cube of ice is removed from the freezer and begins to melt. Let $\ell(t)$ be its side length, $V(t)$ its volume, and $S(t)$ its surface area, all dependent upon t, the number of minutes since it was removed from the freezer. The ice cube is melting (its volume is changing) at a rate proportional to its surface area. That is, $\frac{d V}{d t}=k S(t)$, for some number k. Initially the ice cube has a side length of 2 inches.
a. [4 points] Write V and S in terms of ℓ. Calculate the rate of change (with respect to time) of the side length of the ice cube in terms of ℓ and k.
Solution: $V=\ell^{3}$ and $S=6 \ell^{2}$.
We know, by the chain rule, that

$$
\frac{d V}{d t}=\frac{d V}{d \ell} \frac{d \ell}{d t}=3 \ell^{2} \frac{d \ell}{d t} .
$$

We are given that

$$
\frac{d V}{d t}=k S(t)=k 6 \ell^{2}
$$

Setting these equal, we get

$$
3 \ell^{2} \frac{d \ell}{d t}=k 6 \ell^{2} .
$$

So $\frac{d \ell}{d t}=2 k$ inches per minute.
b. [2 points] How fast is the volume of the ice cube changing immediately after it is removed from the freezer? Your answer will involve k.
Solution: The side length at time $t=0$ is 2 inches, so $\left.\frac{d V}{d t}\right|_{t=0}=k \cdot 6 \cdot 2^{2}=24 k$ in 3 per minute
c. [2 points] What is the sign of k ? Briefly explain.

Solution: From part (b) we see that k has the same sign as $\left.\frac{d V}{d t}\right|_{t=0}$, which is negative, since the volume is decreasing. Thus, k must be negative as well.
d. [3 points] How long will it take the ice cube to melt completely? Your answer may involve k.
Solution: The side length is changing at a constant rate of $2 k$ and starts at 2 inches, so it will take T minutes, where $2+2 k T=0$. So $T=-\frac{1}{k}$ minutes.

