7. [10 points] For each of the following statements, circle True if the statement is always true and circle False otherwise. No justification is necessary.
Recall the following definitions:
A function f is even if $f(-x)=f(x)$ for all x.
A function f is odd if $f(-x)=-f(x)$ for all x.
a. [2 points] If $f(x)$ is an odd function and the tangent line to the graph of $f(x)$ at $x=2$ is $y=4(x-2)+7$, then the tangent line to the graph of $f(x)$ at $x=-2$ is $y=-4(x+2)-7$.

True False
b. [2 points] If $g^{\prime \prime}(x)=2^{x}(x-4)(x+5)^{2}$, then $g(x)$ has inflection points at $x=4$ and $x=-5$.

True False
c. [2 points] If $h(x)$ is an even function and $\int_{-3}^{8} h(x) d x=17$, then $\int_{-8}^{3} h(x) d x=17$.

True False
d. [2 points] If $\int_{3}^{7} p(t) d t=-5$, then $\int_{-1}^{3} p(t-4) d t=-5$.

True False
e. [2 points] If $f(x)$ is a function such that $f^{\prime \prime}(x)$ is continuous, $f^{\prime}(3)>0$, and $f^{\prime \prime}(3)<0$, then $f(3+\Delta x) \leq f(3)+f^{\prime}(3) \Delta x$ for all sufficiently small values of Δx.

True
False

