2. [12 points] Link has started a business selling winter clothes for cats. Among his most successful products are his new kitten mittens. He is currently selling his mittens for $7 per set. Below is a graph of Link’s marginal cost \(MC(q) \) and marginal revenue \(MR(q) \), in dollars per set of mittens, if he makes \(q \) sets of mittens this winter. Due to a shortage of yarn, Link can make a maximum of 200 sets of mittens this winter. In order to start making mittens, Link must spend $40 on knitting supplies (in other words, it costs $40 to make 0 sets of mittens).

You do not need to show any work for this problem.

a. [3 points] Approximately how many sets of mittens should Link make this winter in order to maximize his profit?

Answer: Link should make about \(104 \) sets of mittens.

b. [2 points] If the price per set is raised to $9, approximately how many sets of mittens should Link make in order to maximize his profit?

Answer: Link should make about \(200 \) sets of mittens.

c. [3 points] Write an expression involving integrals which equals Link’s total profit if Link makes 150 sets of mittens. Your expression may involve the functions \(MR(q) \) and \(MC(q) \).

Solution:
\[
\int_0^{150} (MR(q) - MC(q)) \, dq - 40
\]

d. [4 points] Link makes a deal with a store that would like to buy his cat hats. If the store buys up to 50 hats, then each one will cost $10. If the store buys more than 50 hats, then Link will reduce the price of the entire order by $0.05 per hat for every additional hat over 50. (For example, if the store buys 52 hats, they will pay $9.90 per hat.) Write a formula for a function \(L(q) \) which gives Link’s revenue if he sells \(q \) hats to the store.

\[
L(q) = \begin{cases}
 10q & \text{if } 0 \leq q \leq 50 \\
(10 - 0.05(q - 50))q & \text{if } q > 50
\end{cases}
\]