5. [12 points] Consider the function

$$
f(x)=(x-k) e^{-x / k}
$$

where k is a positive constant. Note that the derivative of $f(x)$ is

$$
f^{\prime}(x)=e^{-x / k}-\frac{1}{k}(x-k) e^{-x / k} .
$$

Your answers to this problem might involve the constant k.
Be sure to show all your work and justify all of your answers.
a. [7 points] Determine the global maximum and minimum values of $f(x)$ on the interval $[0, \infty)$. If $f(x)$ does not have a global maximum or a global minimum on this interval, explain why.

Solution: Begin by finding the critical points of $f(x)$. Since $f(x)$ is differentiable, we just need to find where $f^{\prime}(x)=0$.

$$
f^{\prime}(x)=e^{-x / k}-\frac{1}{k}(x-k) e^{-x / k}=e^{-x / k}\left(2-\frac{x}{k}\right)
$$

The factor $e^{-x / k}$ is always positive, and $2-\frac{x}{k}=0$ when $x=2 k$. So the only critial point is at $x=2 k$.
Test the critical point, endpoint, and end behavior:

$$
\begin{aligned}
f(2 k) & =k e^{-2} \\
f(0) & =-k \\
\lim _{x \rightarrow \infty} f(x) & =0
\end{aligned}
$$

So there is a global maximum value of $k e^{-2}$ at $x=2 k$ and a global minimum value of $-k$ at $x=0$.
b. [5 points] Find the x-coordinates of all inflection points of $f(x)$ on the domain $[0, \infty)$ or show that $f(x)$ does not have any inflection points on this interval.

Solution: The second derivative of f is

$$
f^{\prime \prime}(x)=-\frac{1}{k} e^{-x / k}-\left(\frac{1}{k} e^{-x / k}-\frac{1}{k^{2}}(x-k) e^{-x / k}\right)=\frac{1}{k} e^{-x / k}\left(\frac{x}{k}-3\right)
$$

The factor $\frac{x}{k}-3$ is equal to 0 when $x=3 k$. To show this is an inlection point, we can test $x=2 k$ and $x=4 k$:

$$
\begin{aligned}
& f^{\prime \prime}(2 k)=-\frac{1}{k} e^{-2}<0 \\
& f^{\prime \prime}(4 k)=\frac{1}{k} e^{-4}>0
\end{aligned}
$$

The second derivative changes sign at $x=3 k$ so this is an inflection point.

