6. [12 points] Walking through Nichols Arboretum, you see a squirrel running down the trunk of a tree. The trunk of the tree is perfectly straight and makes a right angle with the ground. You stop 20 feet away from the tree and lie down on the ground to watch the squirrel. Suppose $h(t)$ is the distance in feet between the squirrel and the ground, and $\theta(t)$ is the angle in radians between the ground and your line of sight to the squirrel, with t being the amount of time in seconds since you stopped to watch the squirrel.

20 feet
a. [3 points] Write an equation relating $h(t)$ and $\theta(t)$. (Hint: Use the tangent function.)

Solution:

$$
\tan \theta(t)=\frac{h(t)}{20}
$$

b. [5 points] If $\theta(t)$ is decreasing at $1 / 5$ of a radian per second when $\theta(t)=\pi / 3$, how fast is the squirrel moving at that time?
Solution: Differentiate with respect to t :

$$
\frac{1}{\cos ^{2} \theta(t)} \theta^{\prime}(t)=\frac{h^{\prime}(t)}{20}
$$

Plug in $\theta^{\prime}(t)=-1 / 5$ and $\theta(t)=\pi / 3:$

$$
\frac{1}{\cos ^{2}(\pi / 3)}(-1 / 5)=\frac{h^{\prime}(t)}{20}
$$

Solve to get $h^{\prime}(t)=-16$ so the squirrel is moving at -16 feet per second.
c. [4 points] For the last second before the squirrel reaches the ground, it is moving at a constant speed of 20 feet per second. Suppose $\theta^{\prime}(t)=-3 / 4$ at some point during this last second. How high is the squirrel at this time?

Solution: Start with

$$
\frac{1}{\cos ^{2} \theta(t)} \theta^{\prime}(t)=\frac{h^{\prime}(t)}{20}
$$

and plug in $h^{\prime}(t)=-20$ and $\theta^{\prime}(t)=-3 / 4$:

$$
\frac{1}{\cos ^{2} \theta(t)}(-3 / 4)=\frac{-20}{20}
$$

This gives us that $\cos ^{2} \theta(t)=3 / 4$. Then $\cos \theta(t)=\sqrt{3} / 2$ (positive because $0<\theta<\pi / 2$), and $\theta(t)=\arccos (\sqrt{3} / 2)=\pi / 6$. Finally, we use the equation from part (a) to get

$$
h(t)=20 \tan (\pi / 6)=20 / \sqrt{3} \approx 11.547
$$

so the squirrel is at a height of about 11.547 feet.

