10. [11 points] Suppose an online retailer uses robots to transport merchandise to the shipping area in its warehouse. Researchers are analyzing data from sales on November 28, 2014.

- Let $r(h)$ be the total number of kilometers the warehouse robots had traveled in the first h hours of November 28, 2014.
- Let $Q(h)$ be the total weight, in pounds, of the merchandise that had been transported to shipping by the warehouse robots in the first h hours of November 28, 2014.

Suppose that both $r(h)$ and $Q(h)$ are invertible and differentiable on the interval $0<h<24$. For each of the questions below, circle the one best answer. No points will be given for ambiguous or multiple answers.
a. [2 points] Which one of the following expressions is equal to the total number of pounds of merchandise the robots had transported to shipping on November 28 when the robots had traveled a total of 3 km that day?

$$
\begin{array}{lllll}
\text { i. } Q(r(3)) & \text { ii. } r(Q(3)) & \text { iii. } r^{-1}(Q(3)) & \text { iv. } r\left(Q^{-1}(3)\right) & \text { v. } Q\left(r^{-1}(3)\right)
\end{array}
$$

b. [2 points] Let m be a positive constant. Which one of the following expressions is equal to the total number of kilometers the robots had traveled two hours after they had transported a total of m pounds of merchandise to shipping?

$$
\begin{array}{ll}
\text { i. } r(m+2) & \text { ii. } r\left(Q^{-1}(m)+2\right) \quad \text { iii. } Q(2)+r(m) \quad \text { iv. } Q^{-1}(m+2) \quad \text { v. } Q^{\prime}(m)+2
\end{array}
$$

c. [2 points] Which one of the following expressions is equal to the total number of pounds of merchandise transported by the warehouse robots between 1 am and 5 am ?

$$
\text { i. } Q(5) \quad \text { ii. } Q^{\prime}(5)-Q^{\prime}(1) \quad \text { iii. } \int_{1}^{5} Q(h) d h \quad \text { iv. } \int(Q(5)-Q(1)) d h \quad \text { v. } \int_{1}^{5} Q^{\prime}(h) d h
$$

d. [2 points] Which one of the following expressions is equal to the average rate (in pounds per hour) at which merchandise was transported by the robots between 8 am and 10 am ?

$$
\text { i. } \frac{Q^{\prime}(10)+Q^{\prime}(8)}{2} \text { ii. } \frac{Q^{\prime}(10)-Q^{\prime}(8)}{2} \text { iii. } \frac{Q(10)-Q(8)}{2} \text { iv. } \int_{8}^{10} Q(h) d h \text { v. } \int_{8}^{10} Q^{\prime}(h) d h
$$

e. [3 points] Circle the one equation below that best supports the following statement: On November 28, the warehouse robots had traveled a total of 29 kilometers about half an hour after they had traveled a total of 25 kilometers.

$$
\text { i. } r^{\prime}\left(\frac{1}{2}\right)=-4 \text { ii. } r^{\prime}\left(r^{-1}(25)\right)=4 \text { iii. } r^{\prime}(29)=8 \text { iv. }\left(r^{-1}\right)^{\prime}(25)=\frac{1}{8} \quad \text { v. }\left(r^{-1}\right)^{\prime}(25)=4
$$

