1. [13 points]

The graph of a function h(x) is shown on the right. The area of the shaded region A is 4, and h(x) is piecewise linear for $3 \le x \le 6$.

Compute each of the following. If there is not enough information to compute a value exactly, write NOT ENOUGH INFO.

a. [2 points] Find
$$\int_0^3 (h(x) + 2) dx$$
.

$$\int_0^3 (h(x) + 2) dx = \int_0^3 h(x) dx + \int_0^3 2 dx = 4 + (3)(2) = 10.$$
Answer: $\int_0^3 (h(x) + 2) dx =$ 10

b. [2 points] Find the average value of h(x) on the interval [0, 4].

Solution: The average value is given by $\frac{1}{4-0}\int_0^4 h(x) dx = \frac{1}{4}(4-1) = \frac{3}{4}$.

Answer:

c. [3 points] Let $J(x) = \sin(\pi h(x))$. Find J'(3.5).

Solution: Since $J'(x) = \cos(\pi h(x))\pi h'(x)$, we have that $J'(3.5) = \cos(\pi h(3.5))\pi h'(3.5) = \cos(-\pi)\pi(-2) = 2\pi$.

- **Answer:** $J'(3.5) = 2\pi$
- **d**. [3 points] Let H(x) be an antiderivative of h(x) with H(4) = 5. Find an equation for the tangent line to the graph of H(x) at x = 4.

Solution: Since H'(4) = h(4) = -2 and H(4) = 5, the tangent line to the graph of H(x) at x = 4 is given by y - 5 = -2(x - 4).

Answer:
$$y = 5 - 2(x - 4)$$
 or $y = 13 - 2x$
e. [3 points] Let $g(x) = e^x$. Find $\int_6^7 (g(x)h'(x) + g'(x)h(x)) dx$.

Solution: Note that $\frac{d}{dx}(g(x)h(x)) = g(x)h'(x) + g'(x)h(x)$. By the Fundamental Theorem of Calculus, the above integral is therefore equal to $g(7)h(7) - g(6)h(6) = 2e^7 - 1e^6$.

Answer:
$$\int_{6}^{7} (g(x)h'(x) + g'(x)h(x)) dx =$$

University of Michigan Department of Mathematics

Fall, 2014 Math 115 Exam 3 Problem 1 Solution

 $\frac{3}{4}$