1. [13 points]

The graph of a function $h(x)$ is shown on the right. The area of the shaded region A is 4 , and $h(x)$ is piecewise linear for $3 \leq x \leq 6$.

Compute each of the following. If there is not enough information to compute a value exactly, write NOT ENOUGH INFO.
a. [2 points] Find $\int_{0}^{3}(h(x)+2) d x$.

$$
\int_{0}^{\text {Solution: }}(h(x)+2) d x=\int_{0}^{3} h(x) d x+\int_{0}^{3} 2 d x=4+(3)(2)=10 .
$$

Answer: $\int_{0}^{3}(h(x)+2) d x=$
b. [2 points] Find the average value of $h(x)$ on the interval $[0,4]$.

Solution: The average value is given by $\frac{1}{4-0} \int_{0}^{4} h(x) d x=\frac{1}{4}(4-1)=\frac{3}{4}$.

Answer:

c. [3 points] Let $J(x)=\sin (\pi h(x))$. Find $J^{\prime}(3.5)$.

Solution: Since $J^{\prime}(x)=\cos (\pi h(x)) \pi h^{\prime}(x)$, we have that

$$
J^{\prime}(3.5)=\cos (\pi h(3.5)) \pi h^{\prime}(3.5)=\cos (-\pi) \pi(-2)=2 \pi
$$

Answer: $J^{\prime}(3.5)=$ \qquad
d. [3 points] Let $H(x)$ be an antiderivative of $h(x)$ with $H(4)=5$. Find an equation for the tangent line to the graph of $H(x)$ at $x=4$.
Solution: Since $H^{\prime}(4)=h(4)=-2$ and $H(4)=5$, the tangent line to the graph of $H(x)$ at $x=4$ is given by $y-5=-2(x-4)$.

$$
\text { Answer: } \quad y=5-2(x-4) \quad \text { or } \quad y=13-2 x
$$

e. [3 points] Let $g(x)=e^{x}$. Find $\int_{6}^{7}\left(g(x) h^{\prime}(x)+g^{\prime}(x) h(x)\right) d x$.

Solution: Note that $\frac{d}{d x}(g(x) h(x))=g(x) h^{\prime}(x)+g^{\prime}(x) h(x)$. By the Fundamental Theorem of Calculus, the above integral is therefore equal to $g(7) h(7)-g(6) h(6)=2 e^{7}-1 e^{6}$.

Answer: $\int_{6}^{7}\left(g(x) h^{\prime}(x)+g^{\prime}(x) h(x)\right) d x=\frac{2 e^{7}-e^{6}}{}$

