10. [11 points] Suppose an online retailer uses robots to transport merchandise to the shipping area in its warehouse. Researchers are analyzing data from sales on November 28, 2014.

- Let \(r(h) \) be the total number of kilometers the warehouse robots had traveled in the first \(h \) hours of November 28, 2014.
- Let \(Q(h) \) be the total weight, in pounds, of the merchandise that had been transported to shipping by the warehouse robots in the first \(h \) hours of November 28, 2014.

Suppose that both \(r(h) \) and \(Q(h) \) are invertible and differentiable on the interval \(0 < h < 24 \).

For each of the questions below, circle the one best answer. No points will be given for ambiguous or multiple answers.

a. [2 points] Which one of the following expressions is equal to the total number of pounds of merchandise the robots had transported to shipping on November 28 when the robots had traveled a total of 3 km that day?

i. \(Q(r(3)) \)
ii. \(r(Q(3)) \)
iii. \(r^{-1}(Q(3)) \)
iv. \(r(Q^{-1}(3)) \)
v. \(Q(r^{-1}(3)) \)

b. [2 points] Let \(m \) be a positive constant. Which one of the following expressions is equal to the total number of kilometers the robots had traveled two hours after they had transported a total of \(m \) pounds of merchandise to shipping?

i. \(r(m + 2) \)
ii. \(r(Q^{-1}(m) + 2) \)
iii. \(Q(2) + r(m) \)
iv. \(Q^{-1}(m + 2) \)
v. \(Q'(m) + 2 \)

c. [2 points] Which one of the following expressions is equal to the total number of pounds of merchandise transported by the warehouse robots between 1 am and 5 am?

i. \(Q(5) \)
ii. \(Q'(5) - Q'(1) \)
iii. \(\int_1^5 Q(h) \, dh \)
iv. \(\int (Q(5) - Q(1)) \, dh \)
v. \(\int_1^5 Q'(h) \, dh \)

d. [2 points] Which one of the following expressions is equal to the average rate (in pounds per hour) at which merchandise was transported by the robots between 8 am and 10 am?

i. \(\frac{Q'(10) + Q'(8)}{2} \)
ii. \(\frac{Q'(10) - Q'(8)}{2} \)
iii. \(\frac{Q(10) - Q(8)}{2} \)
iv. \(\int_8^{10} Q(h) \, dh \)
v. \(\int_8^{10} Q'(h) \, dh \)

e. [3 points] Circle the one equation below that best supports the following statement:

On November 28, the warehouse robots had traveled a total of 29 kilometers about half an hour after they had traveled a total of 25 kilometers.

i. \(r'(1) = -4 \)
ii. \(r'(r^{-1}(25)) = 4 \)
iii. \(r'(29) = 8 \)
iv. \((r^{-1})'(25) = \frac{1}{8} \)
v. \((r^{-1})'(25) = 4 \)