4. [10 points] A portion of the graph of \(y = f(x) \) is shown below.

The area of shaded region \(A \) is 3, and the area of shaded region \(B \) is 3.

Let \(F(x) \) be the continuous antiderivative of \(f(x) \) with \(F(0) = 1 \) whose domain includes the interval \(-6 \leq x \leq 4.\)

a. [3 points] For what value(s) of \(x \) with \(-6 < x < 4\) does \(F(x) \) have local extrema?

If there are none of a particular type, write NONE. You do not need to justify your answers.

Answer: local max(es) at \(x = \frac{-2}{} \)

Answer: local min(s) at \(x = \frac{2}{} \)

b. [7 points] Recall that \(F(x) \) is the continuous antiderivative of \(f(x) \) with \(F(0) = 1.\) On the axes below, draw the graph of \(y = F(x) \) on the interval \(-6 \leq x \leq 4.\)

Be sure that you pay close attention to each of the following:

- the value of \(F(x) \) at each of \(x = -6, -4, -2, 0, 2, 4 \)
- where \(F \) is/is not differentiable
- where \(F \) is increasing/decreasing/constant
- the concavity of the graph of \(y = F(x) \)