6. [7 points] Consider the family of functions given by

$$
f(x)=\frac{a x}{e^{0.5(b x)^{2}}}
$$

where a and b are constants with $a>1$ and $b>1$.
Note that the derivative and second derivative of $f(x)$ are

$$
f^{\prime}(x)=\frac{a\left(1-b^{2} x^{2}\right)}{e^{0.5(b x)^{2}}} \quad \text { and } \quad f^{\prime \prime}(x)=\frac{a b^{2} x\left(b^{2} x^{2}-3\right)}{e^{0.5(b x)^{2}}} .
$$

Find all global extrema of $f(x)$ on the interval $\left[\frac{1}{4 b}, \infty\right)$. If there are none of a particular type, write NONE.
You must use calculus to find and justify your answers. Be sure to provide enough evidence to justify your answers fully.
Solution: In the domain $\left[\frac{1}{4 b}, \infty\right) f(x)$ has one critical point, which is at $x=\frac{1}{b}$. (Note that $f^{\prime}(x)=0$ for $x= \pm 1 / b$ and $x=-1 / b$ is not in our domain.)
Since

$$
f^{\prime \prime}\left(\frac{1}{b}\right)=\frac{a b(-2)}{e^{0.5}}<0
$$

$x=1 / b$ is a local maximum of $f(x)$.
Since $f(x)$ has exactly one critical point in our domain and it is a local maximum, $x=1 / b$ is a global maximum. (Alternatively, one can note that sign of $f^{\prime}(x)$ changes from positive to negative at $x=1 / b$ and does not change sign again in the interval (since no other critical points), so $f(x)$ is increasing from $\frac{1}{4 b}$ to $\frac{1}{b}$ and always decreasing thereafter.)
The function $f(x)$ has no global minimum on the interval $\left[\frac{1}{4 b}, \infty\right)$ since $\lim _{x \rightarrow \infty} f(x)=0$, but $f(x)>0$ on $\left[\frac{1}{4 b}, \infty\right)$. (Alternatively, one can note as above that $f(x)$ is increasing from $\frac{1}{4 b}$ to $\frac{1}{b}$ and always decreasing thereafter so we compare $f\left(\frac{1}{4 b}\right)$ (which is strictly positive) to $\lim _{x \rightarrow \infty} f(x)=0$.)

Answer: global max(es) at $x=$

Answer: global min(s) at $x=$ \qquad

