9. [8 points] Consider the family of functions given by

$$
I(t)=\frac{A t^{2}}{B+t^{2}}
$$

where A and B are positive constants. Note that the first and second derivatives of $I(t)$ are

$$
I^{\prime}(t)=\frac{2 A B t}{\left(B+t^{2}\right)^{2}} \quad \text { and } \quad I^{\prime \prime}(t)=\frac{2 A B\left(B-3 t^{2}\right)}{\left(B+t^{2}\right)^{3}}
$$

a. [2 points] Find $\lim _{t \rightarrow \infty} I(t)$. Your answer may include the constants A and/or B.

Answer: $\lim _{t \rightarrow \infty} I(t)=$
A researcher studying the ice cover over Lake Michigan throughout the winter proposes that for appropriate values of A and B, the function $I(t)$ is a good approximation for the number of thousands of square miles of Lake Michigan covered by ice t days after the start of December. For such values of A and B, a graph of $y=I(t)$ for $t \geq 0$ is shown below.

Based on observations, the researcher chooses values of the parameters A and B so that the following are true.

- $y=21$ is a horizontal asymptote of the graph of $y=I(t)$.
- $I(t)$ is increasing the fastest when $t=25$.
b. [6 points] Find the values of A and B for the researcher's model.

Remember to show your work carefully.
Solution: From part (a) above, we know the graph of $y=I(t)$ has a horizontal asymptote at $y=A$. So $A=21$.
$I(t)$ is increasing fastest when $I^{\prime}(t)$ is maximized. For any value of t at which $I^{\prime}(t)$ is maximized, t is a critical point of $I^{\prime}(t)$, so $I^{\prime \prime}(t)=0$ or $I^{\prime \prime}(t)$ is undefined. The function $I^{\prime \prime}(t)$ is defined for all t, and $I^{\prime \prime}(t)=0$ if and only if $B-3 t^{2}=0$. So since $I^{\prime}(t)$ is maximized when $t=25$, we have $B-3(25)^{2}=0$ so $B=3(25)^{2}=1875$. (Alternatively, $B-3 t^{2}=0$ when $t= \pm \sqrt{B / 3}$. The positive solution is $\mathrm{t} t=\sqrt{B / 3}$, so $\sqrt{B / 3}=25$ and $B=1875$.)
Thus, if A, B are chosen so that $y=21$ is a horizontal asymptote of the graph, $A=21$.
If A, B are chosen so that $I^{\prime}(t)$ is maximized at $t=25,25=\sqrt{B / 3}$. Thus, $B=1875$.

Answer: $A=$

