9. [8 points] Consider the family of functions given by
\[I(t) = \frac{At^2}{B + t^2} \]
where \(A \) and \(B \) are positive constants. Note that the first and second derivatives of \(I(t) \) are
\[I'(t) = \frac{2ABt}{(B + t^2)^2} \quad \text{and} \quad I''(t) = \frac{2AB(B - 3t^2)}{(B + t^2)^3}. \]

a. [2 points] Find \(\lim_{t \to \infty} I(t) \). Your answer may include the constants \(A \) and/or \(B \).

Answer: \(\lim_{t \to \infty} I(t) = \frac{A}{B} \)

A researcher studying the ice cover over Lake Michigan throughout the winter proposes that for appropriate values of \(A \) and \(B \), the function \(I(t) \) is a good approximation for the number of thousands of square miles of Lake Michigan covered by ice \(t \) days after the start of December. For such values of \(A \) and \(B \), a graph of \(y = I(t) \) for \(t \geq 0 \) is shown below.

![Graph of y = I(t)]

Based on observations, the researcher chooses values of the parameters \(A \) and \(B \) so that the following are true.

- \(y = 21 \) is a horizontal asymptote of the graph of \(y = I(t) \).
- \(I(t) \) is increasing the fastest when \(t = 25 \).

b. [6 points] Find the values of \(A \) and \(B \) for the researcher’s model.

Remember to show your work carefully.

Solution: From part (a) above, we know the graph of \(y = I(t) \) has a horizontal asymptote at \(y = A \). So \(A = 21 \).

\(I(t) \) is increasing fastest when \(I'(t) \) is maximized. For any value of \(t \) at which \(I'(t) \) is maximized, \(t \) is a critical point of \(I'(t) \), so \(I''(t) = 0 \) or \(I''(t) \) is undefined. The function \(I''(t) \) is defined for all \(t \), and \(I''(t) = 0 \) if and only if \(B - 3t^2 = 0 \). So since \(I'(t) \) is maximized when \(t = 25 \), we have \(B - 3(25)^2 = 0 \) so \(B = 3(25)^2 = 1875 \). (Alternatively, \(B - 3t^2 = 0 \) when \(t = \pm \sqrt{B/3} \). The positive solution is \(t = \sqrt{B/3} \), so \(\sqrt{B/3} = 25 \) and \(B = 1875 \).)

Thus, if \(A, B \) are chosen so that \(y = 21 \) is a horizontal asymptote of the graph, \(A = 21 \). If \(A, B \) are chosen so that \(I'(t) \) is maximized at \(t = 25 \), \(25 = \sqrt{B/3} \). Thus, \(B = 1875 \).

Answer: \(A = \frac{21}{B} = 1875 \)