11. [8 points] You are not required to show your work on this page.
a. [2 points] A function $f(x)$ is differentiable. Some values of f and f^{\prime} are shown in the table below.

x	0	1	2	3	4
$f(x)$	3	4	1	-1	-2
$f^{\prime}(x)$	2	-2	-3	0	3

Let $g(x)=\cos \left(\frac{\pi}{2} f(x)\right)$. Which of the following values of x must be a critical point of $g(x)$? Circle all such values.
0
$1 \quad 2$
3
4
NONE OF THESE
b. [2 points] Which of the following expressions gives the linear approximation for $\arctan (x)$ near $x=1$? Circle all such expressions.
i. $\frac{\pi}{4}+\frac{1}{2}(x-1)$
iii. $\frac{1}{1+x^{2}}+\frac{\pi}{4}(x-1)$
v. NONE OF THESE
ii. $\frac{1}{2}+\frac{\pi}{4}(x-1)$
iv. $\arctan (x)+\frac{1}{2}(x-1)$
c. [2 points] Which of the following functions are antiderivatives of $f(x)=\frac{1}{x}$? Circle all such functions.
i. $\ln (|x+1|)$
iii. $\ln (|x|)+2$
v. $4 \ln (|x|)$
ii. $\ln (|x|)$
iv. $\ln (4|x|)$
vi. None of these
d. [2 points] Suppose n is a positive integer, f is a decreasing, continuous function on the interval [2,6], the value of the left Riemann sum with n equal subdivisions for $\int_{2}^{6} f(x) d x$ is A, and $f(2)=f(6)+8$. Circle all the statements that must be true.
i. A is an overestimate for $\int_{2}^{6} f(x) d x$.
ii. $\int_{2}^{6} f(x) d x=8$.
iii. $\int_{1}^{5} f(x+1) d x=\int_{2}^{6} f(x) d x$.
iv. The left Riemann sum for $\int_{2}^{6}(f(x))^{2} d x$ with n equal subdivisions is equal to A^{2}.
v. None of these

