6. [5 points] Consider the differentiable function Z defined by

$$
Z(v)= \begin{cases}\frac{e^{v-1}-v}{(v-1)^{2}} & \text { if } v \neq 1 \\ \frac{1}{2} & \text { if } v=1\end{cases}
$$

Use the limit definition of the derivative to write an explicit expression for $Z^{\prime}(1)$.
Your answer should not involve the letter Z. Do not attempt to evaluate or simplify the limit. Please write your final answer in the answer box provided below.

Answer: $Z^{\prime}(1)=$ \square
7. [6 points] Consider the family of functions

$$
g(x)=16 r^{3} \ln (|x|)+\frac{1}{3} k^{3} x^{3}
$$

where r and k are nonzero constants. Note that

$$
g^{\prime}(x)=\frac{1}{x}\left(k^{3} x^{3}+16 r^{3}\right) \quad \text { and } \quad g^{\prime \prime}(x)=\frac{1}{x^{2}}\left(2 k^{3} x^{3}-16 r^{3}\right) .
$$

Find values of r and k so that $g(x)$ has an inflection point at $(1,9)$. Be sure to justify that $(1,9)$ is in fact an inflection point of $g(x)$ for your choice of r and k.

Answer: $r=$ \qquad and $k=$ \qquad

