1. [12 points] Recall that a function h is odd if $h(-x)=-h(x)$ for all x. A portion of the graph of $p(x)$, an odd function, is shown below. Assume that the areas of the two shaded regions are 20 and 11, as indicated on the graph, and note that $p(x)$ is linear for $16<x<20$.

Remember to show your work throughout this problem.
a. [4 points] Compute the exact value of $\int_{0}^{20}(5-3 p(x)) d x$.

$$
\text { Solution: We have } \begin{aligned}
\int_{0}^{20}(5-3 p(x)) d x & =\int_{0}^{20} 5 d x-3 \int_{0}^{20} p(x) d x \\
& =100-3\left(20-11-\frac{4 \cdot 4}{2}\right)=97
\end{aligned}
$$

Answer:
97
b. [2 points] Compute the exact value of $\int_{4}^{8} p^{\prime}(x) d x$.

Solution: By the Fundamental Theorem, we have $\int_{4}^{8} p^{\prime}(x) d x=p(8)-p(4)=0-4=-4$.
Answer: \qquad
c. [3 points] Find the average value of $p(x)$ on the interval $-16 \leq x \leq 8$.

Solution: The average value is given by $\frac{1}{8-(-16)} \int_{-16}^{8} p(x) d x$. Since p is odd, we have $\int_{-8}^{8} p(x) d x=0$, and $\int_{-16}^{-8} p(x) d x=-\int_{8}^{16} p(x) d x$. Thus, the average value is
$\frac{1}{24}\left(\int_{-16}^{8} p(x) d x\right)=\frac{1}{24}\left(\int_{-16}^{-8} p(x) d x+\int_{-8}^{8} p(x) d x\right)=\frac{1}{24}\left(-\int_{8}^{16} p(x) d x+0\right)=\frac{11}{24}$.
Answer:

$$
\frac{11}{24}
$$

d. [3 points] Use a right Riemann sum with 3 equal subintervals to estimate $\int_{12}^{18} p(x) d x$. Write out all terms of the sum.
Solution:

$$
2(p(14)+p(16)+p(18))=2(-2+0+(-2))=-8
$$

Answer: $\int_{12}^{18} p(x) d x \approx$

