- 11. [8 points] You are not required to show your work on this page.
 - **a**. [2 points] A function f(x) is differentiable. Some values of f and f' are shown in the table below.

x	0	1	2	3	4
f(x)	3	4	1	-1	-2
f'(x)	2	-2	-3	0	3

Let $g(x) = \cos(\frac{\pi}{2}f(x))$. Which of the following values of x must be a critical point of g(x)? Circle all such values.

- 0 1 2 3 4 NONE OF THESE
- **b**. [2 points] Which of the following expressions gives the linear approximation for $\arctan(x)$ near x = 1? Circle all such expressions.
 - i. $\frac{\pi}{4} + \frac{1}{2}(x-1)$ iii. $\frac{1}{1+x^2} + \frac{\pi}{4}(x-1)$ v. NONE OF THESE ii. $\frac{1}{2} + \frac{\pi}{4}(x-1)$ iv. $\arctan(x) + \frac{1}{2}(x-1)$
- c. [2 points] Which of the following functions are antiderivatives of $f(x) = \frac{1}{x}$? Circle <u>all</u> such functions.
 - i. $\ln(|x+1|)$ ii. $\ln(|x|) + 2$ v. $4\ln(|x|)$ ii. $\ln(|x|)$ vi. None of these
- **d**. [2 points] Suppose *n* is a positive integer, *f* is a decreasing, continuous function on the interval [2, 6], the value of the left Riemann sum with *n* equal subdivisions for $\int_2^6 f(x)dx$ is *A*, and f(2) = f(6) + 8. Circle all the statements that must be true.

i. A is an overestimate for
$$\int_{2}^{6} f(x)dx$$
.
ii. $\int_{2}^{6} f(x) dx = 8$.
iii. $\int_{1}^{5} f(x+1) dx = \int_{2}^{6} f(x) dx$.
iv. The left Riemann sum for $\int_{2}^{6} (f(x))^{2} dx$ with *n* equal subdivisions is equal to A^{2} .
v. NONE OF THESE