6. [5 points] Consider the differentiable function Z defined by

$$
Z(v)= \begin{cases}\frac{e^{v-1}-v}{(v-1)^{2}} & \text { if } v \neq 1 \\ \frac{1}{2} & \text { if } v=1\end{cases}
$$

Use the limit definition of the derivative to write an explicit expression for $Z^{\prime}(1)$.
Your answer should not involve the letter Z. Do not attempt to evaluate or simplify the limit. Please write your final answer in the answer box provided below.

Answer: $Z^{\prime}(1)=\lim _{h \rightarrow 0} \frac{\frac{e^{1+h-1}-(1+h)}{(1+h-1)^{2}}-\frac{1}{2}}{h} \quad$ or $\lim _{h \rightarrow 0} \frac{\frac{e^{h}-1-h}{h^{2}}-\frac{1}{2}}{h}$
7. [6 points] Consider the family of functions

$$
g(x)=16 r^{3} \ln (|x|)+\frac{1}{3} k^{3} x^{3}
$$

where r and k are nonzero constants. Note that

$$
g^{\prime}(x)=\frac{1}{x}\left(k^{3} x^{3}+16 r^{3}\right) \quad \text { and } \quad g^{\prime \prime}(x)=\frac{1}{x^{2}}\left(2 k^{3} x^{3}-16 r^{3}\right) .
$$

Find values of r and k so that $g(x)$ has an inflection point at $(1,9)$. Be sure to justify that $(1,9)$ is in fact an inflection point of $g(x)$ for your choice of r and k.

Solution: The candidates for inflection points are the values of x in the domain of $g(x)$ for which the second derivative is either zero or undefined. Since $x=0$ is not in the domain of $g(x)$, the only candidate is when $2 k^{3} x^{3}-16 r^{3}=0$, or when $x=\frac{2 r}{k}$.
So, in order for $g(x)$ to have an inflection point at $x=1$, we must have $1=\frac{2 r}{k}$, or $k=2 r$.
In order for the point $(1,9)$ to lie on the graph of $g(x)$, we need $g(1)=9$. So we must have $g(1)=\frac{1}{3} k^{3}=9$, so $k=3$, and $r=\frac{3}{2}$.

To justify that $(1,9)$ is really an inflection point of $g(x)$, we will show that the second derivative changes sign across the point $x=1$. If we plug in $k=3$ and $r=\frac{3}{2}$ to $g^{\prime \prime}(x)$, then we get

$$
g^{\prime \prime}(x)=\frac{1}{x^{2}}\left(54 x^{3}-54\right)=\frac{54}{x^{2}}\left(x^{3}-1\right) .
$$

When $x>1,\left(x^{3}-1\right)$ is negative and $\frac{54}{x^{2}}$ is positive, so $g^{\prime \prime}(x)$ is negative, and when $x<1$, $g^{\prime \prime}(x)$ is positive because all terms are positive. Thus, $(1,9)$ is indeed an inflection point.

Answer: $r=\frac{3}{2}$
and $k=$ \qquad

