9. [10 points] Suppose $g(x)$ is a function and $G(x)$ is an antiderivative of $g(x)$ such that $G(x)$ is defined and continuous on the entire interval $-4 \leq x \leq 6$. Portions of the graphs of g and G are shown below. Note the following:

- $g(x)$ is zero for $-1 \leq x \leq 0$.
- For $4 \leq x \leq 6$, the graph of $g(x)$ is the lower half of the circle of radius 1 centered at $(5,0)$.
- For $0 \leq x \leq 1$, the graph of $G(x)$ is the top right quarter of the circle of radius 1 centered at the origin.
a. [4 points] Use the portions of both graphs shown on the right to complete the table below with the exact values of $G(x)$.

x	-3	-1	4	6
$G(x)$	3	1	4	$4-\frac{\pi}{2}$

Solution: Note from the graph of G that $G(0)=1, G(1)=0$, and $G(2)=2$. We find the values in the table by using the Fundamental Theorem of Calculus (and finding appropriate areas using the graph of $g(x))$.

$$
\begin{aligned}
G(4) & =\int_{2}^{4} g(x) d x+G(2)=2+2=4 . \\
G(6) & =\int_{4}^{6} g(x) d x+G(4)=-\frac{\pi}{2}+4 . \\
G(-1) & =G(0)-\int_{-1}^{0} f(x) d x=1-0=1 . \\
G(-3) & =G(-1)-\int_{-3}^{-1} f(x) d x=1-(-2)=1 .
\end{aligned}
$$

b. [6 points] Use the axes on the right to sketch the missing portions of the graphs of g and G over the interval $-4 \leq x \leq 6$.
Be sure that you pay close attention to each of the following:

- the values of $G(x)$ you found in part (a) above
- where G is/is not differentiable
- where G and g are increasing, decreasing, or constant - the concavity of the graph of $y=G(x)$

