1. [9 points] A portion of the graph of a function f is shown below.

Throughout this problem, you do not need to explain your reasoning.
For each of parts a.- d. below, circle all of the listed values satisfying the given statement. If there are no such values, circle none.
a. [2 points] For which of the following values of c is $\lim _{x \rightarrow c^{-}} f(x)=f(c)$?

$$
c=-3 \quad c=-1 \quad c=0 \quad c=1 \quad c=2.5 \quad \text { NONE }
$$

b. [2 points] For which of the following values of c is $f(x)$ continuous at $x=c$?

$$
c=-3 \quad c=-1 \quad c=0 \quad c=1 \quad c=2.5 \quad \text { NONE }
$$

c. [2 points] For which of the following values of c does $f(x)$ appear to be differentiable at $x=c$?

$$
c=-3 \quad c=-1 \quad c=0 \quad c=1 \quad c=2.5 \quad \text { NONE }
$$

d. [3 points] Consider the quantities defined as follows:
I. The number 0 .
II. $f(1)$.
III. $\int_{-1}^{1} f(x) d x$.
IV. The left-hand Riemann sum with 2 equal subintervals for $\int_{-1}^{1} f(x) d x$.
V. The right-hand Riemann sum with 2 equal subintervals for $\int_{-1}^{1} f(x) d x$.

Rank the quantities in order from least to greatest by filling in the blanks below with the options I-V. You do not need to show your work.
\qquad $<$ \qquad $<$ \qquad $<$ \qquad $<$ \qquad

