12. [8 points] Let W be the differentiable function given by

$$
W(p)= \begin{cases}4 \ln (2)+4 \ln (-p) & \text { if } p \leq-0.5 \\ 2 \sin \left(4 p^{2}-1\right) & \text { if }-0.5<p<0.5 \\ \frac{\arctan (2 p-1)}{p^{2}} & \text { if } p \geq 0.5\end{cases}
$$

a. [4 points] Use the limit definition of the derivative to write an explicit expression for $W^{\prime}(3)$. Your answer should not involve the letter W. Do not evaluate or simplify the limit. Please write your final answer in the answer box provided below.

Answer: $W^{\prime}(3)=$ \square
b. [4 points] With W as defined above, consider the function g defined by

$$
g(t)= \begin{cases}c t+k & \text { if } t \leq 0 \\ W\left(-e^{t}\right) & \text { if } t>0\end{cases}
$$

for some constants c and k. Find all values of c and k so that $g(t)$ is differentiable. Show your work carefully, and leave your answers in exact form. If no such values of c and/or k exist, write NONE in the appropriate answer blank and be sure to justify your reasoning.

Answer: $c=$ \qquad and $k=$ \qquad

