2. [9 points] Uri is filling a cone with molten aluminum. The cone is upside-down, so the "base" is at the top of the cone and the vertex at the bottom, as shown in the diagram. The base is a circular disk with radius 7 cm and the height of the cone is 12 cm .
Recall that the volume of a cone is $\frac{1}{3} A h$, where A is the area of the base and h is the height of the cone (i.e., the vertical distance from the vertex to the base). (Note that the diagram may not be to scale.)

a. [3 points] Write a formula in terms of h for the volume V of molten aluminum, in cm^{3}, in the cone if the molten aluminum in the cone reaches a height of $h \mathrm{~cm}$.

Answer: $V=$ \qquad
b. [3 points] The height of molten aluminum is rising at $3 \mathrm{~cm} / \mathrm{sec}$ at the moment when the molten aluminum in the cone has reached a height of 11 cm . What is the rate, in $\mathrm{cm}^{3} / \mathrm{sec}$, at which Uri is pouring molten aluminum into the cone at that moment?

Answer:

c. [3 points] The height of molten aluminum is rising at $3 \mathrm{~cm} / \mathrm{sec}$ at the moment when the molten aluminum in the cone has reached a height of 11 cm . What is the rate, in $\mathrm{cm}^{2} / \mathrm{sec}$, at which the area of the top surface of the molten aluminum is increasing at that moment?

Answer:

