This problem continues the investigation of Xanthippe's donuts.
4. [10 points] For your convenience, the graphs of $p(t)$ and $q(t)$ are reprinted below. Recall:

- The rate, in donuts per hour, at which Xanthippe makes donuts t hours after 7 am is modeled by the function $p(t)$.
- The rate, in donuts per hour, at which customers purchase donuts t hours after 7 am is modeled by the function $q(t)$.
- Assume that at 7 am, Xanthippe begins with no donuts in stock.

a. [4 points] Estimate the total number of donuts produced by 10 am using a right-hand Riemann sum with two equal subintervals. Be sure to write down all the terms in your sum. Is your answer an underestimate or overestimate?

Answer: donuts produced by $10 \mathrm{am} \approx$ \qquad

> This is an (circle one)

Overestimate
Underestimate
b. [4 points] The number of donuts in stock t hours after 7 am is modeled by the function $s(t)$. Estimate the t-values for all critical points of $s(t)$ in the interval $0<t<4$, and estimate all values of t in the interval $0<t<4$ at which $s(t)$ has a local extremum. For each answer blank write NONE if appropriate. You do not need to justify your answers.
Answer: \quad Critical point(s) at $t=\square$

Local max(es) at $t=$ \qquad Local $\min (\mathrm{s})$ at $t=$ \qquad
c. [2 points] At what time is the number of donuts that Xanthippe has in stock the greatest? Round your answer to the nearest half hour. You do not need to justify your answer.

