6. [4 points] Formulas for a function g(x) and its derivative g'(x) are given below.

$$g(x) = (2 - 4x)e^{-x^2}$$
 and $g'(x) = 4(2x + 1)(x - 1)e^{-x^2}$.

Find all global extrema of g(x) on the open interval $(0, \infty)$. Use calculus to find and justify your answers, and be sure to show enough evidence to demonstrate that you have found all global extrema. Write NONE if appropriate.

Answer: global max(es) at x =_____

global min(s) at
$$x =$$

7. [5 points] Consider the family of functions given by $g(x) = x \ln(px^2 + q)$, for constants p and q. Find values of p and q so that the function has a local extremum at (1, 2). Be sure to justify (using calculus) that your resulting function does have a local extremum at (1, 2) and to determine the type of extremum. Leave your answers in exact form. You may find the following information to be useful.

$$g'(x) = \ln(px^2 + q) + \frac{2px^2}{px^2 + q}$$
 and $g''(x) = \frac{2px(px^2 + 3q)}{(px^2 + q)^2}$

Answer: $p = _$ and $q = _$

Fall, 2016 Math 115 Exam 3 Problem 6