6. [4 points] Formulas for a function $g(x)$ and its derivative $g^{\prime}(x)$ are given below.

$$
g(x)=(2-4 x) e^{-x^{2}} \quad \text { and } \quad g^{\prime}(x)=4(2 x+1)(x-1) e^{-x^{2}} .
$$

Find all global extrema of $g(x)$ on the open interval $(0, \infty)$. Use calculus to find and justify your answers, and be sure to show enough evidence to demonstrate that you have found all global extrema. Write none if appropriate.

Answer: global max(es) at $x=$ \qquad
global $\min (\mathrm{s})$ at $x=$ \qquad
7. [5 points] Consider the family of functions given by $g(x)=x \ln \left(p x^{2}+q\right)$, for constants p and q. Find values of p and q so that the function has a local extremum at $(1,2)$. Be sure to justify (using calculus) that your resulting function does have a local extremum at $(1,2)$ and to determine the type of extremum. Leave your answers in exact form. You may find the following information to be useful.

$$
g^{\prime}(x)=\ln \left(p x^{2}+q\right)+\frac{2 p x^{2}}{p x^{2}+q} \quad \text { and } \quad g^{\prime \prime}(x)=\frac{2 p x\left(p x^{2}+3 q\right)}{\left(p x^{2}+q\right)^{2}}
$$

Answer: $p=$ \qquad and $q=$ \qquad

