6. [4 points] Formulas for a function $g(x)$ and its derivative $g'(x)$ are given below.

$$g(x) = (2 - 4x)e^{-x^2} \quad \text{and} \quad g'(x) = 4(2x + 1)(x - 1)e^{-x^2}.$$

Find all global extrema of $g(x)$ on the open interval $(0, \infty)$. Use calculus to find and justify your answers, and be sure to show enough evidence to demonstrate that you have found all global extrema. Write NONE if appropriate.

Answer:

- global max(es) at $x = \ldots$
- global min(s) at $x = \ldots$

7. [5 points] Consider the family of functions given by $g(x) = x \ln(px^2 + q)$, for constants p and q. Find values of p and q so that the function has a local extremum at $(1, 2)$. Be sure to justify (using calculus) that your resulting function does have a local extremum at $(1, 2)$ and to determine the type of extremum. Leave your answers in exact form.

You may find the following information to be useful.

$$g'(x) = \ln(px^2 + q) + \frac{2px^2}{px^2 + q} \quad \text{and} \quad g''(x) = \frac{2px(px^2 + 3q)}{(px^2 + q)^2}$$

Answer:

- $p = \ldots$ and $q = \ldots$

Circle one: LOCAL MAXIMUM LOCAL MINIMUM