9. [9 points] The graphs of u(r) and u'(r) are shown below. The graphs also show tangent lines to both functions at r = 5.

The table below shows some values of h(s) and h'(s). Both h and h' are differentiable.

s	-6	-4	-2	0	2	4	6
h(s)	1	4	5	-1	-3	4	7
h'(s)	3	2	-4	-1	0	2	1

a. [5 points] Let g(t) = u(h(t)). Find a formula for $\ell(t)$, the local linearization of g(t) near t = -2, and use this to approximate a solution to g(t) = 6.14.

Answer: $\ell(t) =$ _____

Answer: g(t) = 6.14 when $t \approx$ _____

b. [2 points] Write a formula for c(r), the quadratic approximation of u(r) at r = 5. (Recall that a formula for the quadratic approximation Q(x) of a function f(x) at x = a is $Q(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2}(x-a)^2$.)

Answer: c(r) =_____

c. [2 points] Use the data provided to estimate h''(-5).