11. [10 points] The graph of a portion of y = k(x) is shown below. Note that for 3 < x < 5, the graph of k(x) is a portion of the graph obtained by shifting $y = x^2$ three units to the right.

Let K(x) be the continuous antiderivative of k(x) passing through the point (-1, 1). **a.** [5 points] Use the graph to complete the table below with the <u>exact</u> values of K(x).

x	-5	-3	-1	1	3	5
K(x)	-2	2	1	-1	1	$\frac{11}{3}$

- **b**. [5 points] On the axes below, sketch a detailed graph of y = K(x) for -5 < x < 5. Be sure that you pay close attention to each of the following:
 - where K(x) is and is not differentiable,
 - the values of K(x) you found in the table above,
 - where K(x) is increasing/decreasing/constant, and the concavity of K(x).

