11. [10 points] The graph of a portion of $y=k(x)$ is shown below. Note that for $3<x<5$, the graph of $k(x)$ is a portion of the graph obtained by shifting $y=x^{2}$ three units to the right.

Let $K(x)$ be the continuous antiderivative of $k(x)$ passing through the point $(-1,1)$.
a. [5 points] Use the graph to complete the table below with the exact values of $K(x)$.

x	-5	-3	-1	1	3	5
$K(x)$	-2	2	1	-1	1	$\frac{11}{3}$

b. [5 points] On the axes below, sketch a detailed graph of $y=K(x)$ for $-5<x<5$. Be sure that you pay close attention to each of the following:

- where $K(x)$ is and is not differentiable,
- the values of $K(x)$ you found in the table above,
- where $K(x)$ is increasing/decreasing/constant, and the concavity of $K(x)$.

