12. [8 points] Let W be the differentiable function given by

$$
W(p)= \begin{cases}4 \ln (2)+4 \ln (-p) & \text { if } p \leq-0.5 \\ 2 \sin \left(4 p^{2}-1\right) & \text { if }-0.5<p<0.5 \\ \frac{\arctan (2 p-1)}{p^{2}} & \text { if } p \geq 0.5 .\end{cases}
$$

a. [4 points] Use the limit definition of the derivative to write an explicit expression for $W^{\prime}(3)$. Your answer should not involve the letter W. Do not evaluate or simplify the limit. Please write your final answer in the answer box provided below.

Answer: $W^{\prime}(3)=\lim _{h \rightarrow 0} \frac{\frac{\arctan (2 \cdot 3-1+h)}{(3+h)^{2}}-\frac{\arctan (2 \cdot 3-1)}{9}}{h}$
b. [4 points] With W as defined above, consider the function g defined by

$$
g(t)= \begin{cases}c t+k & \text { if } t \leq 0 \\ W\left(-e^{t}\right) & \text { if } t>0\end{cases}
$$

for some constants c and k. Find all values of c and k so that $g(t)$ is differentiable. Show your work carefully, and leave your answers in exact form.
If no such values of c and/or k exist, write NONE in the appropriate answer blank and be sure to justify your reasoning.
Solution: Note that for $t>0, g(t)=4 \ln (2)+4 t$, so

$$
g^{\prime}(t)= \begin{cases}c & \text { for } t<0 \\ 4 & \text { for } t>0\end{cases}
$$

(Alternatively, $g^{\prime}(t)=W^{\prime}\left(-e^{t}\right) \cdot-e^{t}$.) Since we are told that W is differentiable, we need only to find values so that g is differentiable at $t=0$.
In order for g to be differentiable, we need to find values of c and k so that
$\lim _{t \rightarrow 0^{-}} g(t)=\lim _{t \rightarrow 0^{+}} g(t)$ and $\lim _{t \rightarrow 0^{-}} g^{\prime}(t)=\lim _{t \rightarrow 0^{+}} g^{\prime}(t)$.
The first equation is true when $c \cdot 0+k=W\left(-e^{0}\right)=W(-1)$. Note that since $-1<-0.5$, we have $W(-1)=4 \ln (2)+4 \ln (-(-1))=4 \ln (2)$, so $k=4 \ln (2)$.

The second equation is true when $c=-W^{\prime}(-1)$. Near $p=-1$ we have $W^{\prime}(p)=4$. Therefore, we need $c=4$.

Answer: $c=$ \qquad and $k=$ \qquad

