12. [8 points] Let \(W \) be the differentiable function given by

\[
W(p) = \begin{cases}
4 \ln(2) + 4 \ln(-p) & \text{if } p \leq -0.5 \\
2 \sin(4p^2 - 1) & \text{if } -0.5 < p < 0 \\
\frac{\arctan(2p - 1)}{p^2} & \text{if } p \geq 0.
\end{cases}
\]

(a) [4 points] Use the limit definition of the derivative to write an explicit expression for \(W'(3) \).
Your answer should not involve the letter \(W \). Do not evaluate or simplify the limit. Please write your final answer in the answer box provided below.

Answer: \(W'(3) = \lim_{h \to 0} \frac{\arctan(2 \cdot 3 + h) - \arctan(2 \cdot 3 - 1)}{(3 + h)^2 - 9} \)

(b) [4 points] With \(W \) as defined above, consider the function \(g \) defined by

\[
g(t) = \begin{cases}
ct + k & \text{if } t \leq 0 \\
W(-e^t) & \text{if } t > 0
\end{cases}
\]

for some constants \(c \) and \(k \). Find all values of \(c \) and \(k \) so that \(g(t) \) is differentiable.
Show your work carefully, and leave your answers in exact form.
If no such values of \(c \) and/or \(k \) exist, write NONE in the appropriate answer blank and be sure to justify your reasoning.

Solution: Note that for \(t > 0 \), \(g(t) = 4 \ln(2) + 4t \), so

\[
g'(t) = \begin{cases}
c & \text{for } t < 0 \\
4 & \text{for } t > 0
\end{cases}
\]

(Alternatively, \(g'(t) = W'(-e^t) \cdot -e^t \).) Since we are told that \(W \) is differentiable, we need only to find values so that \(g \) is differentiable at \(t = 0 \).
In order for \(g \) to be differentiable, we need to find values of \(c \) and \(k \) so that

\[
\lim_{t \to 0^-} g(t) = \lim_{t \to 0^+} g(t) \quad \text{and} \quad \lim_{t \to 0^-} g'(t) = \lim_{t \to 0^+} g'(t).
\]

The first equation is true when \(c \cdot 0 + k = W(-e^0) = W(-1) \). Note that since \(-1 < -0.5 \), we have \(W(-1) = 4 \ln(2) + 4 \ln(-(-1)) = 4 \ln(2) \), so \(k = 4 \ln(2) \).

The second equation is true when \(c = -W'(-1) \). Near \(p = -1 \) we have \(W'(p) = 4 \).
Therefore, we need \(c = 4 \).

Answer: \(c = 4 \) and \(k = 4 \ln(2) \)