2. [9 points] Uri is filling a cone with molten aluminum. The cone is upside-down, so the “base” is at the top of the cone and the vertex at the bottom, as shown in the diagram. The base is a circular disk with radius 7 cm and the height of the cone is 12 cm. Recall that the volume of a cone is \(\frac{1}{3}Ah \), where \(A \) is the area of the base and \(h \) is the height of the cone (i.e., the vertical distance from the vertex to the base). (Note that the diagram may not be to scale.)

a. [3 points] Write a formula in terms of \(h \) for the volume \(V \) of molten aluminum, in cm\(^3\), in the cone if the molten aluminum in the cone reaches a height of \(h \) cm.

Solution: Let \(r \) be the radius of the top surface of the molten aluminum. Using similar triangles, we see \(r = \frac{7h}{12} \). Since the top surface of the molten aluminum is a circular disk, its area is \(\pi r^2 \). So \(V = \frac{1}{3} \pi r^2 h = \frac{1}{3} \pi \left(\frac{7}{12} \right)^2 h^3 \left(= \frac{49\pi}{432} h^3 \right) \).

Answer: \(V = \frac{\pi}{3} \left(\frac{7}{12} \right)^2 h^3 \)

b. [3 points] The height of molten aluminum is rising at 3 cm/sec at the moment when the molten aluminum in the cone has reached a height of 11 cm. What is the rate, in cm\(^3\)/sec, at which Uri is pouring molten aluminum into the cone at that moment?

Solution: We differentiate \(V = \frac{\pi}{3} \left(\frac{7}{12} \right)^2 h^3 \) with respect to \(h \) to get \(\frac{dV}{dh} = \pi \left(\frac{7}{12} \right)^2 h^2 \). So, \(\frac{dV}{dt} = \frac{dV}{dh} \cdot \frac{dh}{dt} = \pi \left(\frac{7}{12} \right)^2 h^2 \cdot \frac{dh}{dt} \).

(Alternatively, differentiating both sides of the equation \(V = \frac{\pi}{3} \left(\frac{7}{12} \right)^2 h^3 \) with respect to \(t \) results in the same formula for \(\frac{dV}{dt} \).)

We are given that \(\frac{dh}{dt} \bigg|_{h=11} = 3 \), so we find

\[
\frac{dV}{dt} \bigg|_{h=11} = \pi \left(\frac{7}{12} \right)^2 11^2 \cdot 3 = \frac{17787\pi}{144} = \frac{5929\pi}{48} \approx 388.052.
\]

Thus at the moment when the molten aluminum in the cone has reached a height of 11 cm, Uri is pouring molten aluminum into the cone at a rate of \(\frac{5929\pi}{48} \) (or about 388.052) cm\(^3\)/sec

Answer: \(\pi \left(\frac{7}{12} \right)^2 11^2 \cdot 3 = \frac{5929\pi}{48} \approx 388.052 \)

c. [3 points] The height of molten aluminum is rising at 3 cm/sec at the moment when the molten aluminum in the cone has reached a height of 11 cm. What is the rate, in cm\(^2\)/sec, at which the area of the top surface of the molten aluminum is increasing at that moment?
Solution: Let A be the area of the top surface of the molten aluminum. Since $A = \pi r^2 = \pi \left(\frac{7}{12}\right)^2 h^2$, we see that $\frac{dA}{dh} = 2\pi \left(\frac{7}{12}\right)^2 h$.

So, $\frac{dA}{dt} = \frac{dA}{dh} \frac{dh}{dt} = 2\pi \left(\frac{7}{12}\right)^2 h \cdot \frac{dh}{dt}$.

(Alternatively, differentiating both sides of the equation $A = \pi \left(\frac{7}{12}\right)^2 h^2$ with respect to t results in the same formula for $\frac{dA}{dt}$.)

We are given that $\frac{dh}{dt} \bigg|_{h=11} = 3$, so we find

$\frac{dA}{dt} \bigg|_{h=11} = 2\pi \left(\frac{7}{12}\right)^2 11 \cdot 3 = \frac{3234\pi}{144} = \frac{539\pi}{24} \approx 70.5549$.

Thus at the moment when the molten aluminum in the cone has reached a height of 11 cm, the area of the top surface of the molten aluminum is increasing at a rate of $\frac{539\pi}{24}$ (or about 70.5549) cm2/sec.

Answer: $\frac{22\pi \left(\frac{7}{12}\right)^2 \cdot 3}{24} = \frac{539\pi}{24} \approx 70.5549$