2. [ 9 points] Uri is filling a cone with molten aluminum. The cone is upside-down, so the "base" is at the top of the cone and the vertex at the bottom, as shown in the diagram. The base is a circular disk with radius 7 cm and the height of the cone is 12 cm .
Recall that the volume of a cone is $\frac{1}{3} A h$, where $A$ is the area of the base and $h$ is the height of the cone (i.e., the vertical distance from the vertex to the base). (Note that the diagram may not be to scale.)

a. [3 points] Write a formula in terms of $h$ for the volume $V$ of molten aluminum, in $\mathrm{cm}^{3}$, in the cone if the molten aluminum in the cone reaches a height of $h \mathrm{~cm}$.
Solution: Let $r$ be the radius of the top surface of the molten aluminum. Using similar triangles, we see $r=\frac{7 h}{12}$. Since the top surface of the molten aluminum is a circular disk, its area is $\pi r^{2}$.
So $V=\frac{1}{3} \pi r^{2} h=\frac{1}{3} \pi\left(\frac{7}{12}\right)^{2} h^{3}\left(=\frac{49 \pi}{432} h^{3}\right)$.
Answer: $\quad V=\frac{\pi}{3}\left(\frac{7}{12}\right)^{2} h^{3}$
b. [3 points] The height of molten aluminum is rising at $3 \mathrm{~cm} / \mathrm{sec}$ at the moment when the molten aluminum in the cone has reached a height of 11 cm . What is the rate, in $\mathrm{cm}^{3} / \mathrm{sec}$, at which Uri is pouring molten aluminum into the cone at that moment?

Solution: We differentiate $V=\frac{\pi}{3}\left(\frac{7}{12}\right)^{2} h^{3}$ with respect to $h$ to get $\frac{d V}{d h}=\pi\left(\frac{7}{12}\right)^{2} h^{2}$. So, $\frac{d V}{d t}=\frac{d V}{d h} \frac{d h}{d t}=\pi\left(\frac{7}{12}\right)^{2} h^{2} \cdot \frac{d h}{d t}$.
(Alternatively, differentiating both sides of the equation $V=\frac{\pi}{3}\left(\frac{7}{12}\right)^{2} h^{3}$ with respect to $t$ results in the same formula for $\frac{d V}{d t}$.)
We are given that $\left.\frac{d h}{d t}\right|_{h=11}=3$, so we find

$$
\left.\frac{d V}{d t}\right|_{h=11}=\pi\left(\frac{7}{12}\right)^{2} 11^{2} \cdot 3=\frac{17787 \pi}{144}=\frac{5929 \pi}{48} \approx 388.052
$$

Thus at the moment when the molten aluminum in the cone has reached a height of 11 cm , Uri is pouring molten aluminum into the cone at a rate of $\frac{5929 \pi}{48}$ (or about 388.052) $\mathrm{cm}^{3} / \mathrm{sec}$

$$
\text { Answer: } \quad \pi\left(\frac{7}{12}\right)^{2} 11^{2} \cdot 3=\frac{5929 \pi}{48} \approx 388.052
$$

c. [3 points] The height of molten aluminum is rising at $3 \mathrm{~cm} / \mathrm{sec}$ at the moment when the molten aluminum in the cone has reached a height of 11 cm . What is the rate, in $\mathrm{cm}^{2} / \mathrm{sec}$, at which the area of the top surface of the molten aluminum is increasing at that moment?

Solution: Let $A$ be the area of the top surface of the molten aluminum.
Since $A=\pi r^{2}=\pi\left(\frac{7}{12}\right)^{2} h^{2}$, we see that $\frac{d A}{d h}=2 \pi\left(\frac{7}{12}\right)^{2} h$.
So, $\frac{d A}{d t}=\frac{d A}{d h} \frac{d h}{d t}=2 \pi\left(\frac{7}{12}\right)^{2} h \cdot \frac{d h}{d t}$.
(Alternatively, differentiating both sides of the equation $A=\pi\left(\frac{7}{12}\right)^{2} h^{2}$ with respect to $t$ results in the same formula for $\frac{d A}{d t}$.)
We are given that $\left.\frac{d h}{d t}\right|_{h=11}=3$, so we find
$\left.\frac{d A}{d t}\right|_{h=11}=2 \pi\left(\frac{7}{12}\right)^{2} 11 \cdot 3=\frac{3234 \pi}{144}=\frac{539 \pi}{24} \approx 70.5549$.
Thus at the moment when the molten aluminum in the cone has reached a height of 11 cm , the area of the top surface of the molten aluminum is increasing at a rate of $\frac{539 \pi}{24}$ (or about 70.5549 ) $\mathrm{cm}^{2} / \mathrm{sec}$.

