3. [7 points] At the cider mill, Xanthippe makes donuts fastest when she isn't distracted by customers. The rate, in donuts per hour, at which Xanthippe makes donuts t hours after 7 am is modeled by the function $p(t)$. Customers purchase donuts during their visit to the cider mill. The rate, in donuts per hour, at which customers purchase donuts t hours after 7 am is modeled by the function $q(t)$. The graphs of $y=p(t)$ (solid) and $y=q(t)$ (dashed) are shown below. Assume that at 7 am , Xanthippe begins with no donuts in stock.

a. [2 points] At what rate, in donuts per hour, is the number of donuts in stock (donuts produced but not yet sold) increasing/decreasing at 8:30 am? Be sure to circle one of INCREASING or DECREASING.
Solution: At $t=1.5, p(t)-q(t)=-20$. The rate at which donuts are being sold exceeds the rate at which the donuts are being produced at a rate of 20 donuts/hr. Therefore, the number of donuts in stock is decreasing at a rate of 20 donuts $/ \mathrm{hr}$.

Answer: increasing DECREASING at a rate of 20 donuts/hr
b. [2 points] Write an expression involving p and q for the number of donuts in stock at 10 am. Your answer may involve definite integrals. Do not give approximations.
Solution: $\quad p(t)-q(t)$ is the rate at which the number of donuts in stock is changing t hours after 7 am . By the fundamental theorem of calculus, $\int_{0}^{3} p(t)-q(t) d t$ is the change in the number of donuts in stock between 7 am and 10 am . Since there were no donuts in stock at at 7 am , this is the number of donuts in stock at 10 am .

$$
\text { Answer: } \quad \int_{0}^{3} p(t)-q(t) d t
$$

c. [3 points] Xanthippe stops making donuts at 11 am . Assume that after 11 am , customers continue to purchase donuts at a constant rate of 40 donuts per hour until all of Xanthippe's donuts are sold out. Write an expression for the number of hours, starting at 11 am , that it takes for all her donuts to be sold out. Your answer may involve definite integrals. Do not give approximations.
Solution: The number of donuts in stock at 11 am is $\int_{0}^{4} p(t)-q(t) d t$. When s hours have passed after $11 \mathrm{am}, 40 \mathrm{~s}$ donuts have been sold (assuming all donuts were not already sold), so we want to find s such that $40 s=\int_{0}^{4} p(t)-q(t) d t$.

Answer:

$$
\frac{1}{40} \int_{0}^{4} p(t)-q(t) d t
$$

