This problem continues the investigation of Xanthippe's donuts.
4. [10 points] For your convenience, the graphs of $p(t)$ and $q(t)$ are reprinted below. Recall:

- The rate, in donuts per hour, at which Xanthippe makes donuts $t$ hours after 7 am is modeled by the function $p(t)$.
- The rate, in donuts per hour, at which customers purchase donuts $t$ hours after 7 am is modeled by the function $q(t)$.
- Assume that at 7 am , Xanthippe begins with no donuts in stock.

a. [4 points] Estimate the total number of donuts produced by 10 am using a right-hand Riemann sum with two equal subintervals. Be sure to write down all the terms in your sum. Is your answer an underestimate or overestimate?

Solution: Each subinterval has width $\Delta t=1.5$. Therefore, a right-hand Riemann sum with two equal subintervals is $\int_{0}^{3} p(t) d t \approx p(1.5) \cdot 1.5+p(3) \cdot 1.5=60 \cdot 1.5+40 \cdot 1.5$

Answer: donuts produced by $10 \mathrm{am} \approx$ 150

This is an (circle one)
Overestimate $\quad$ Underestimate
b. [4 points] The number of donuts in stock $t$ hours after 7 am is modeled by the function $s(t)$. Estimate the $t$-values for all critical points of $s(t)$ in the interval $0<t<4$, and estimate all values of $t$ in the interval $0<t<4$ at which $s(t)$ has a local extremum. For each answer blank write NONE if appropriate. You do not need to justify your answers.
Solution: We know $s^{\prime}(t)=p(t)-q(t)$. Since $p(t)$ and $q(t)$ are defined on $0<t<4$, we only need to find where $p(t)-q(t)=0$. In other words, where $p(t)=q(t)$. From the graph, we can see that $s(t)$ goes from positive to negative at $t=1.2$ and $t=3.1$ and from negative to positive at $t=1.7$.

Answer:
Critical point(s) at $t=$ $\qquad$
$1.2,1.7,3.1$

Local $\max (\mathrm{es})$ at $t=$ $\qquad$ Local $\min (\mathrm{s})$ at $t=$ $\qquad$
c. [2 points] At what time is the number of donuts that Xanthippe has in stock the greatest? Round your answer to the nearest half hour. You do not need to justify your answer.

