6. [4 points] Formulas for a function $g(x)$ and its derivative $g^{\prime}(x)$ are given below.

$$
g(x)=(2-4 x) e^{-x^{2}} \quad \text { and } \quad g^{\prime}(x)=4(2 x+1)(x-1) e^{-x^{2}} .
$$

Find all global extrema of $g(x)$ on the open interval $(0, \infty)$. Use calculus to find and justify your answers, and be sure to show enough evidence to demonstrate that you have found all global extrema. Write none if appropriate.

Solution: The critical points of g are at $x=\frac{-1}{2}$ and $x=1$. The first is not in $(0, \infty)$.
Option 1: using a derivative test.
First derivative test: note that $e^{-x^{2}}$ is always positive. When $0<x<1,2 x+1$ is positive and $x-1$ is negative, so $g^{\prime}(x)<0$. When $x>1$, all of the factors in $g^{\prime}(x)$ are positive, so $g^{\prime}(x)>0$. This tells us that g has a local minimum at $x=1$.

Second derivative test: $g^{\prime \prime}(x)=-4 e^{-x^{2}}\left(1-6 x-2 x^{2}+4 x^{3}\right)$, so $g^{\prime \prime}(1)=-4 e^{-1}(1-6-2+4)=$ $12 e^{-1}>0$, so g has a local minimum at $x=1$.
After using one of these tests to determine that $g(x)$ has a local minimum at $x=1$, we need to say something more to answer the question about the location of global extrema.

Since there's only one critical point, and the endpoint $x=0$ is not included in our interval, the local minimum at $x=1$ is also the global minimum, and there is no global maximum.

Option 2: using limits
Note that $g(x)$ is a continuous function. We see that $\lim _{x \rightarrow 0} g(x)=g(0)=2, g(1)=-2 e^{-1}$, and $\lim _{x \rightarrow \infty} g(x)=0$. Since $-2 e^{-1}<0$, we have a global minimum at $x=1$ and no global maximum.

Answer: global max(es) at $x=\square$ None
global $\min (\mathrm{s})$ at $x=$ \qquad

