7. [5 points] Consider the family of functions given by $g(x)=x \ln \left(p x^{2}+q\right)$, for constants p and q. Find values of p and q so that the function has a local extremum at $(1,2)$. Be sure to justify (using calculus) that your resulting function does have a local extremum at $(1,2)$ and to determine the type of extremum. Leave your answers in exact form.
You may find the following information to be useful.

$$
g^{\prime}(x)=\ln \left(p x^{2}+q\right)+\frac{2 p x^{2}}{p x^{2}+q} \quad \text { and } \quad g^{\prime \prime}(x)=\frac{2 p x\left(p x^{2}+3 q\right)}{\left(p x^{2}+q\right)^{2}}
$$

Solution: In order to have a local extremum at $(1,2)$, we must have that $g(1)=2$ and $g^{\prime}(1)=0$ or does not exist. So we need

$$
1 \cdot \ln (p+q)=2 \text { and } \ln (p+q)+\frac{2 p}{p+q}=0 .
$$

(Note that for the first equation to be true, $p+q>0$, so $g^{\prime}(1)$ exists.)
Since $\ln (p+q)=2$, we have $p+q=e^{2}$, so the second equation reduces to $2+\frac{2 p}{e^{2}}=0$. This is true when $p=-e^{2}$. Plugging this back into the first equation, we find $q=2 e^{2}$.
To find whether this is a local min or max, we can plug these values for p and q into the second derivative and evaluate it when $x=1$. This gives $\frac{-2 e^{2}\left(-e^{2}+3 \cdot 2 e^{2}\right)}{e^{4}}$. The denominator of this is positive, while the numerator is negative, giving us $g^{\prime \prime}(1)<0$, so we have a local max at $(1,2)$.
Answer: $p=$ \qquad and $q=$ \qquad

