8. [9 points] Zoltan is undergoing an anti-aging skin treatment that involves a machine that uses electrical current to deliver medicine through the skin. During a treatment session, the total amount of medicine that has been absorbed by the skin is a function of the total electrical charge that has entered the skin.
A particular treatment session begins before noon and ends after 12:30 pm, and at noon, Zoltan has already absorbed 4 mg of the medicine.

- Let $m(c)$ be the total amount of medicine, in mg, that has been absorbed when a total electrical charge of c coulombs has entered the skin. Assume that m is invertible and that both m and m^{-1} are differentiable.
- During the treatment, let $q(t)$ be the total electrical charge, in coulombs, that has entered the skin at t minutes after noon. Assume that q is invertible and that both q and q^{-1} are differentiable.

For each of the questions below, circle the one best answer. No points will be given for ambiguous or multiple answers.
a. [2 points] Which of the following expressions represents the total amount of medicine, in mg , that has been absorbed by Zoltan's skin at 12:06 pm?
i. $m(6)$
ii. $m(q(6))$
iii. $m(q(6)+4)$
iv. $m(q(6))+4$
v. $m(6)+4$
vi. $q(m(6))$
vii. $q(m(6)+4)$
viii. $q(m(6))+4$
b. [2 points] Which of the following equations best supports the statement
"Between 12:03 pm and 12:04 pm, Zoltan absorbs about 0.2 mg of the medicine." ?

$$
\begin{array}{ccc}
\begin{array}{c}
\text { i. } m(3)=0.2
\end{array} & \text { ii. } m(q(4))=0.2 & \text { iii. } q^{\prime}(3)=0.2 \\
\text { iv. } m^{\prime}(q(4))=0.2 & \text { v. } m^{\prime}(3)=0.2 & \text { vi. } q^{\prime}(4) \cdot m^{\prime}(4)=0.2 \\
\text { vii. } m^{\prime}\left(q^{\prime}(3)\right)=0.2 & \text { viii. } q^{\prime}(4) \cdot m^{\prime}(q(4))=0.2 & \text { ix. }\left(q^{-1}\right)^{\prime}(0.2)=3
\end{array}
$$

c. [3 points] Which of the following is the best interpretation of the equation $\int_{0}^{30} q^{\prime}(t) d t=200$?
i. Between noon and $12: 30 \mathrm{pm}, 200$ coulombs of electrical charge enter the skin.
ii. Between noon and $12: 30 \mathrm{pm}$, about 200 coulombs of electrical charge enter the skin.
iii. Between noon and 12:30 pm, electrical charge enters the skin at an average rate of 200 coulombs per minute.
iv. Between noon and $12: 30 \mathrm{pm}$, electrical charge enters the skin at an average rate of about 200 coulombs per minute.
d. [2 points] Which of the following equations expresses the statement: "Between 12:15 pm and 12:25 pm, Zoltan absorbs an additional 7 mg of the medicine."

$$
\begin{array}{lcc}
\begin{array}{lll}
\text { i. } m(25)-m(15)=7 & \text { ii. } \frac{m(25)-m(15)}{10}=7 & \text { iii. } m^{\prime}(20)=0.7 \\
\text { iv. } \int_{q(15)}^{q(25)} m^{\prime}(c) d c=7 & \text { v. } \int_{q(15)}^{q(25)} m(c) d c=7 & \text { vi. } \int_{15}^{25} m(c) d c=7 \\
\text { vii. } \int_{15}^{25} m(q(t)) d t=7 & \text { viii. } \int_{15}^{25} m^{\prime}(q(t)) d t=7
\end{array}
\end{array}
$$

