9. [9 points] The graphs of $u(r)$ and $u^{\prime}(r)$ are shown below. The graphs also show tangent lines to both functions at $r=5$.

The table below shows some values of $h(s)$ and $h^{\prime}(s)$. Both h and h^{\prime} are differentiable.

s	-6	-4	-2	0	2	4	6
$h(s)$	1	4	5	-1	-3	4	7
$h^{\prime}(s)$	3	2	-4	-1	0	2	1

a. [5 points] Let $g(t)=u(h(t))$. Find a formula for $\ell(t)$, the local linearization of $g(t)$ near $t=-2$, and use this to approximate a solution to $g(t)=6.14$.
Solution: In order to find $\ell(t)$ we need to find $g(-2)$ and $g^{\prime}(-2)$.
$g(-2)=u(h(-2))=u(5)=6$
$g^{\prime}(-2)=u^{\prime}(h(-2)) h^{\prime}(-2)=u^{\prime}(5) \cdot(-4)=0.7 \cdot(-4)=-2.8$
So $\ell(t)=g(-2)+g^{\prime}(-2)(t+2)=6-2.8(t+2)$.
To approximate a solution to $g(t)=6.14$, we want to find a value of t so that $\ell(t)=6.14$.
Using the formula we found for $\ell(t)$ and solving for t gives us $t=-2.05$.

Answer: $\quad \ell(t)=\underline{6-2.8(t+2)}$
Answer: $g(t)=6.14$ when $t \approx \quad-2.05$
b. [2 points] Write a formula for $c(r)$, the quadratic approximation of $u(r)$ at $r=5$.
(Recall that a formula for the quadratic approximation $Q(x)$ of a function $f(x)$ at $x=a$ is $Q(x)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2}(x-a)^{2}$.)
Solution: For this we need $u(5)=6, u^{\prime}(5)=0.7$, and $u^{\prime \prime}(5)=\frac{2.86-0.7}{-4-5}=\frac{2.16}{-9}=-0.24$.

$$
\text { Answer: } \quad c(r)=\frac{6+0.7(r-5)-0.12(r-5)^{2}}{}
$$

c. [2 points] Use the data provided to estimate $h^{\prime \prime}(-5)$.

Answer: $\quad h^{\prime \prime}(-5) \approx \frac{3-2}{-6-(-4)}=\frac{-1}{2}$

