3. [8 points] A group of biologists is studying the population of trout in a lake. Let $k(t)$ be the rate at which the population of trout changes, in thousands of trout per month, t months after the biologists started their study, and let $P(t)$ be the population of trout, in thousands, t months after the study begins. The graph of $y=k(t)$ is shown below for $0 \leq t \leq 6$.

a. [4 points] Fill in the numbers I. - V. in the blanks below to list the quantities in order from least to greatest.
I. The number zero.
IV. $\int_{3}^{5} k(t) d t$
II. $P(4)-P(1)$
III. $\int_{1}^{3} k(t) d t$
V. $\int_{3}^{5} k(5) d t$

b. [3 points] Suppose $P(2)=8.6$. Use the graph to find a formula for $L(t)$, the linear approximation for $P(t)$ near $t=2$.

Answer: $\quad L(t)=$ \qquad
c. [1 point] Use $L(t)$ to approximate the population of trout, in thousands, 1.75 months after the study starts.

Answer: \qquad

