6. [12 points] Water is being poured into a large vase with a circular base. Let $V(t)$ be the volume of water in the vase, in cubic inches, t minutes after the water started being poured into the vase. Let H be the depth of the water in the vase, in inches, and let R be the radius of the surface of the water, in inches.
A formula for V in terms of R and H is given by

$$
V=\frac{1}{2} \pi H\left(R^{2}+8\right) .
$$

a. [6 points] Suppose that the water is being poured into the vase at rate of 300 cubic inches per minute. When the depth of the water is 5 inches, the radius of the surface of the water is 4 inches and the radius is increasing at a rate of 1.2 inches per minute. Find the rate at which the depth of the water in the vase is increasing
 at that time. Show all your work carefully.

Answer:

b. [2 points] Estimate the instantaneous rate of change of H when $t=3$ if

t	1.5	2.3	3.0	3.2
H	1.3	1.7	1.9	1.95

Show your work and include units.

Answer:
c. [4 points] Recall that R gives the radius of the surface of the water, in inches, t minutes after the water started being poured into the vase. Suppose that R is given by $R=m(t)$ and $m^{\prime}(3)=0.7$. Use these facts to complete the following sentence:

After the water has been poured into the vase for three minutes, over the next ten seconds, the radius of the surface of the water...
7. [7 points] Let A and B be positive constants and $f(x)=\frac{A\left(x^{2}-B\right)}{\sqrt{x-3}}$, for $x>3$. Note that

$$
f^{\prime}(x)=\frac{A\left(3 x^{2}-12 x+B\right)}{2(x-3)^{\frac{3}{2}}} \quad \text { and } \quad f^{\prime \prime}(x)=\frac{3 A\left(x^{2}-8 x+24-B\right)}{4(x-3)^{\frac{5}{2}}} .
$$

Find all values of A and B so that $f(x)$ has an inflection point at $(8,2)$. Use calculus to justify that the point $(8,2)$ is an inflection point. If there are no such values, write nONE.

$$
A=
$$

\qquad

$$
B=
$$

\qquad

