10. [8 points] Consider the family of functions $g(x)=e^{x}-k x$, where k is a positive constant.
a. [2 points] Show that the point $(\ln (k), k-k \ln (k))$ is the only critical point of $g(x)$ for all positive k. Show all your work to receive full credit.

Solution: $\quad g^{\prime}(x)=e^{x}-k$, then $g^{\prime}(x)=0$ if $e^{x}=k$ or $x=\ln (k)$. There are no other critical points since $g^{\prime}(x)$ is defined for all values of x.
The y-coordinate of the critical points is given by $g(\ln (k))=e^{\ln (k)}-k \ln (k)=k-k \ln (k)$.
b. [2 points] Show that $g(x)$ has a global minimum on $(-\infty, \infty)$ at $x=\ln (k)$. Use calculus to justify your answer.

Solution: Since $e^{x}-k x \rightarrow \infty$ as $x \rightarrow \infty$ and $e^{x}-k x \rightarrow \infty$ as $x \rightarrow-\infty$ and $x=\ln (k)$ is the only critical point, then it is a global minimum.
c. [4 points] Find all values of $0.5 \leq k \leq 2$ that maximize the y-value of the global minimum of $g(x)$ on $(-\infty, \infty)$. Use calculus to justify your answer. Write nONE if no such value exists.

Solution: Let $h(k)=k-k \ln (k)$ defined on $0.5 \leq k \leq 2$. To find critical points, we find where $h^{\prime}(k)=-\ln (k)=0$. This occurs at $k=1$. Looking at the table of values

k	0.5	1	2
$h(k)$	$0.5(1-\ln (0.5)) \approx 0.84$	1	$2(1-\ln (2)) \approx 0.61$

Then the value of k that maximizes the value of the global minimum of $g(x)$ is $k=1$.
Answer: $k=1$.

