- 10. [8 points] Consider the family of functions $g(x) = e^x kx$, where k is a positive constant.
 - **a.** [2 points] Show that the point $(\ln(k), k k \ln(k))$ is the only critical point of g(x) for all positive k. Show all your work to receive full credit.

Solution: $g'(x) = e^x - k$, then g'(x) = 0 if $e^x = k$ or $x = \ln(k)$. There are no other critical points since g'(x) is defined for all values of x.

The y-coordinate of the critical points is given by $g(\ln(k)) = e^{\ln(k)} - k \ln(k) = k - k \ln(k)$.

b. [2 points] Show that g(x) has a global minimum on $(-\infty, \infty)$ at $x = \ln(k)$. Use calculus to justify your answer.

Solution: Since $e^x - kx \to \infty$ as $x \to \infty$ and $e^x - kx \to \infty$ as $x \to -\infty$ and $x = \ln(k)$ is the only critical point, then it is a global minimum.

c. [4 points] Find all values of $0.5 \le k \le 2$ that maximize the y-value of the global minimum of g(x) on $(-\infty, \infty)$. Use calculus to justify your answer. Write NONE if no such value exists.

Solution: Let $h(k) = k - k \ln(k)$ defined on $0.5 \le k \le 2$. To find critical points, we find where $h'(k) = -\ln(k) = 0$. This occurs at k = 1. Looking at the table of values

Then the value of k that maximizes the value of the global minimum of g(x) is k=1.

Answer: k = 1.