3. [8 points] A group of biologists is studying the population of trout in a lake. Let $k(t)$ be the rate at which the population of trout changes, in thousands of trout per month, t months after the biologists started their study, and let $P(t)$ be the population of trout, in thousands, t months after the study begins. The graph of $y=k(t)$ is shown below for $0 \leq t \leq 6$.

a. [4 points] Fill in the numbers I. - V. in the blanks below to list the quantities in order from least to greatest.
I. The number zero.
IV. $\int_{3}^{5} k(t) d t$
II. $P(4)-P(1)$
III. $\int_{1}^{3} k(t) d t$
V. $\int_{3}^{5} k(5) d t$

Solution: $V \leq I V \leq I \leq I I \leq I I I$
b. [3 points] Suppose $P(2)=8.6$. Use the graph to find a formula for $L(t)$, the linear approximation for $P(t)$ near $t=2$.

Solution: Since $k(t)=P^{\prime}(t)$, then $L(t)=P(2)+k(2)(t-2)=8.6+3(t-2)$

$$
L(t)=8.6+3(t-2)
$$

c. [1 point] Use $L(t)$ to approximate the population of trout, in thousands, 1.75 months after the study starts.

$$
\text { Solution: } \quad L(1.75)=8.6+3(1.75-2)=8.6-0.75=7.85 .
$$

$$
P(1.75) \approx 7.85
$$

