4. [10 points] Gabe the mouse is swimming alone in a very large puddle of water. He keeps track of his swimming time by logging his velocity at various points in time. Gabe starts at a point on the edge of the puddle and swims in a straight line with increasing speed. A table of Gabe's velocity $V(t)$, in feet per second, t seconds after he begins swimming is given below.

t	0	0.5	1	1.5	2	2.5	3	3.5	4	4.5	5	5.5	6
$V(t)$	0	0.3	0.4	0.45	0.9	1.2	1.8	2.4	2.7	2.9	3	3.2	3.5

a. [3 points] Give a practical interpretation of the integral $\int_{1}^{5.5} V(t) d t$ in the context of the problem. Be sure to include units.
Solution: The distance Gabe traveled, in feet, in between seconds 1 and 5.5 after he started swimming.
b. [3 points] Estimate $\int_{1}^{5.5} V(t) d t$ by using a right-hand Riemann sum with 3 equal subdivisions. Make sure to write down all terms in your sum.

Solution: If we divide the interval $[1,5.5]$ in three, we obtain $\Delta t=\frac{5.5-1}{3}=1.5$. Then

$$
\operatorname{Right}(3)=(V(2.5)+V(4)+V(5.5)) \Delta t=(1.2+2.7+3.2)(1.5)=(7.1)(1.5)=10.65
$$

Answer $=10.65$ feet.
c. [1 point] Is your estimate from above an overestimate or an underestimate of the exact value of $\int_{1}^{5.5} V(t) d t ?$ Circle your answer.

Solution: OVERESTIMATE UNDERESTIMATE NOT ENOUGH INFORMATION

d. [3 points] Suppose Gabe wants to use a Riemann sum to calculate how far he traveled between $t=1$ and $t=5.5$, accurate to within 0.15 feet. How many times would he have to measure his velocity in this interval in order to achieve this accuracy? Justify your answer.

Solution: Since $V(t)$ is increasing in $[1,5.5]$ then $|V(5.5)-V(1)| \Delta t \leq 0.15$, where Δt is the possible width of each interval in order for the estimate to be true. Hence $\Delta t \leq \frac{0.15}{2.8}$. Then if N is the number of times Gabe has to measure his velocity to attain its desired accuracy, then $N=\frac{5.5-1}{\Delta t} \geq \frac{4.5}{\frac{0.15}{2.8}}=3(28)=84$

Answer $=$ At least 84 times.

