7. [7 points] Let A and B be positive constants and $f(x)=\frac{A\left(x^{2}-B\right)}{\sqrt{x-3}}$, for $x>3$. Note that

$$
f^{\prime}(x)=\frac{A\left(3 x^{2}-12 x+B\right)}{2(x-3)^{\frac{3}{2}}} \quad \text { and } \quad f^{\prime \prime}(x)=\frac{3 A\left(x^{2}-8 x+24-B\right)}{4(x-3)^{\frac{5}{2}}} .
$$

Find all values of A and B so that $f(x)$ has an inflection point at $(8,2)$. Use calculus to justify that the point $(8,2)$ is an inflection point. If there are no such values, write none.

Solution: In order to have an inflection point at $(8,2)$ three conditions need to be satisfied:

- $f^{\prime \prime}(8)=0$. This is equivalent to

$$
0=\frac{3 A\left((8)^{2}-8(8)+24-B\right)}{4(8-3)^{\frac{5}{2}}}
$$

This is true if $B=24$ or $A=0$. Only $B=24$ is possible since $A>0$.

- $f(8)=2$. This yields

$$
2=\frac{A\left((8)^{2}-B\right)}{\sqrt{8-3}}=\frac{A(64-B)}{\sqrt{5}} .
$$

Using $B=24$ we get $A=\frac{\sqrt{5}}{20}$.

- $f^{\prime \prime}(x)$ needs to have different signs on $(3,8)$ and $(8, \infty)$.
- On $(3,8)$ plug $x=4$ into $f^{\prime \prime}(x)=\frac{3 \sqrt{5} x(x-8)}{80(x-3)^{\frac{5}{2}}}$. We get $f^{\prime \prime}(4)=\frac{(+)(-)}{+}=-$.
- On $(8, \infty)$, plug $x=9$ into $f^{\prime \prime}(x)=\frac{3 \sqrt{5} x(x-8)}{80(x-3)^{\frac{5}{2}}}$. We get $f^{\prime \prime}(9)=\frac{(+)(+)}{+}=+$.

$$
A=\frac{\sqrt{5}}{20} \quad B=24
$$

