9. [9 points] For the following problems, choose the correct answer. If none of the choices are correct, circle NONE OF THESE.
a. [2 points] Which of the following is an antiderivative of the function $1 / x+\cos (x)$ for $x>0$? Circle all correct answers.
Solution:
i. $-\frac{1}{x^{2}}-\sin (x)$
iii. $\ln (x)+\sin (x)-20$
v. $\frac{1}{x^{2}}+\sin (x)$
ii. $\ln (5 x)+\sin (x)$
iv. $\ln \left(\frac{1}{x} \cos (x)\right)$
vi. NONE OF THESE
b. [2 points] Suppose $f(x)$ is a differentiable, invertible function defined on $(-\infty, \infty)$ with $f^{\prime}(x)>0$ for all x. Suppose that $f(3)=5$ and $f^{\prime}(3)=2$. Which of the following statements must be true? Circle all correct answers.
Solution:
i. $f^{\prime}\left(f^{-1}(x)\right)=\frac{1}{\left(f^{-1}\right)^{\prime}(x)}$
iii. $\left(f^{-1}\right)^{\prime}(x)=\frac{1}{f^{\prime}(x)}$
v. $f^{\prime}(2)=\frac{1}{5}$
ii. $f^{\prime}(x)$ is invertible \quad iv. $\left(f^{-1}\right)^{\prime}(5)=\frac{1}{2}$
vi. NONE OF THESE
c. [2 points] If $p(t)$ is an even function that is differentiable on $(-\infty, \infty)$, which of the following must be true? Circle all correct answers.

Solution:

i. $\int_{1}^{4} p(t) d t=\int_{-4}^{-1} p(t) d t$
iv. $\int_{6}^{8} p(t+3) d t=\int_{3}^{5} p(t) d t$
ii. $\int_{-4}^{4} p(t) d t=0$.
v. $\int_{-5}^{5} p^{\prime}(t) d t=0$
iii. Any antiderivative of $p(t)$ is an even func- vi. NONE OF THESE tion
d. [3 points] Suppose the limit definition of the derivative gives

$$
g^{\prime}(-1)=\lim _{h \rightarrow 0} \frac{2^{c(-1+h)}+a(-1+h)^{3}-\left(2^{-c}-a\right)}{h}
$$

where a and c are nonzero constants. Which of the following could be the formula for $g(x)$? Circle the one best answer.

Solution:

i. $g(x)=2^{-c x}+a x$
iii. $g(x)=2^{c}-a$
v. $g(x)=2^{c x}+a x^{3}$
ii. $g(x)=a(x-1)^{3}+c^{x}$
iv. $g(x)=2^{c(x+h)}+a h^{3}$
vi. NONE OF THESE

