1. [10 points] Brianna is riding her unicycle on William Street. As she rides, she passes the Ann Arbor District Library. The function $u(t)$ represents Brianna's location (in meters west of the library) when she has been riding her unicycle for t seconds. The table below shows some values of $u^{\prime}(t)$, the derivative of $u(t)$.

t	0	2	5	10	15	18	20	23	25	30
$u^{\prime}(t)$	0	1	2	2.5	1.5	0	-1	-1.5	-2	-3

Note the following:
i) $u(23)=2$.
ii) $u^{\prime}(t)$ is continuous.
iii) $u^{\prime}(t)$ satisfies:

- $u^{\prime}(t)$ is increasing on $(0,10)$.
- $u^{\prime}(t)$ is decreasing on $(10,30)$.
a. [2 points] Circle all of the following intervals on which $u(t)$ could be invertible.

```
Solution:
```

$[3,8] \quad[2,15] \quad[5,20] \quad$ NONE OF THESE
b. [3 points] $u(t)$ is invertible on the interval [20,30]. Let $f(t)$ be the inverse of $u(t)$ on that interval. Calculate $f^{\prime}(2)$ and include units.

Solution:

$$
f^{\prime}(2)=\frac{1}{u^{\prime}\left(u^{-1}(2)\right)}=\frac{1}{u^{\prime}(23)}=\frac{1}{-1.5}=-\frac{2}{3} .
$$

Answer: $\quad-\frac{2}{3}$ seconds per meter.
c. [2 points] Find the value of $\lim _{x \rightarrow 23} \frac{u(x)-u(23)}{x-23}$. If the limit does not exist, write DNE. If it cannot be determined based on the information given, write NI.

Solution:

Answer: $\quad u^{\prime}(23)=-1.5$.
d. [1 point] Estimate the value of $u^{\prime \prime}(24)$.

Solution:

$$
u^{\prime \prime}(24) \approx \frac{-2+1.5}{2}=-0.25 .
$$

Answer: -0.25.
e. [2 points] Which of the following values of t could be inflection points of $u(t)$?

