11. [8 points] Jose is building a pyramid-shaped hat with 4 triangular sides of the same shape. Each side has a base of $2 x$ centimeters. The height of the hat is L centimeters. Each of the four triangular sides has height M centimeters (see the diagram below).

a. [3 points] Jose plans to use 400 square centimeters of material in the construction of the hat. Find a formula for the height L of the hat only in terms of x. Your formula should not include the letter M. Show all your work.

Solution: Using Pythagorean theorem $L=\sqrt{M^{2}-x^{2}}$. Since he uses 400 square centimeters of material in the construction of the hat, we have $4 M x=400$. This yields

$$
L=\sqrt{M^{2}-x^{2}}=\sqrt{\left(\frac{100}{x}\right)^{2}-x^{2}}
$$

Answer: $L(x)=\sqrt{\left(\frac{100}{x}\right)^{2}-x^{2}}$.
b. [2 points] The volume of a pyramid is given by $V=\frac{1}{3} A h$, where A is the area of the base and h is the height of the pyramid. Find a formula for the volume of the hat V, in cubic centimeters, in terms only of the variable x. Your answer should not include the variables L and/or M.

Solution:

Answer: $V(x)=\frac{4}{3} x^{2} \sqrt{\left(\frac{100}{x}\right)^{2}-x^{2}}$
c. [3 points] What is the domain of the function $V(x)$ in the context of this problem?

Solution: We need to find where $y(x)=\left(\frac{100}{x}\right)^{2}-x^{2}>0$ when $x>0$ (since x is a length).
First we find where

$$
\begin{aligned}
\left(\frac{100}{x}\right)^{2}-x^{2} & =0 \\
\frac{10,000}{x^{2}} & =x^{2} \\
x^{4} & =10,000 \quad \text { this implies } \quad x= \pm 10 .
\end{aligned}
$$

We need to test the sign of $y(x)$ (and hence $V(x))$ on $(0,10)$ and $(10, \infty)$. The fact that $y(2)=50^{2}-4>0$ and $y(50)=4-50^{2}<0$ shows the domain of $V(x)$ is $0<x<10$.

Answer: $\quad 0<x<10$

