3. [14 points] Suppose $f(x)$ is an even function. A piece of the graph of $f(x)$ is given below. Note that $f(x)$ is piecewise linear for $0 \leq x \leq 6$.
Find the following quantities. If any of their values do not exist, write DNE. If there is not enough information to answer, write NI.
a. [1 point] Find $\lim _{p \rightarrow 4^{+}} f(p)$.

Solution:
Answer: 2
b. [2 points] Find $\lim _{m \rightarrow 0} \frac{f(1+m)-f(1)}{m}$.

Solution:

Answer: -3
c. [3 points] Let $g(x)=\frac{1}{\sqrt{4+f(2 x)}}$. Find $g^{\prime}(2.5)$.

Solution:
$g^{\prime}(x)=-\frac{1}{2}(4+f(2 x))^{-\frac{3}{2}}\left(2 f^{\prime}(2 x)\right)=-\frac{f^{\prime}(2 x)}{(4+f(2 x))^{\frac{3}{2}}} \quad g^{\prime}(2.5)=-\frac{f^{\prime}(5)}{(4+f(5))^{\frac{3}{2}}}=-\frac{(-2)}{4^{\frac{3}{2}}}=\frac{1}{4}$
Answer: $\quad \frac{1}{4}$
d. [3 points] Recall that $f(x)$ is even. Find $\int_{-3}^{1}(5 f(t)-3) d t$.

Solution:

$$
\begin{aligned}
\int_{-3}^{1}(5 f(t)-3) d t & \left.\left.=5\left(\int_{-3}^{-1} f(t)\right) d t+\int_{-1}^{1} f(t)\right) d t\right)-\int_{-3}^{1} 3 d t \\
& =5(-4.5+3)-12=-7.5-12=-19.5 .
\end{aligned}
$$

Answer: -19.5
e. [3 points] Let $j(x)$ be an antiderivative of $f(x)$ with $j(5)=3$. Suppose that $p(x)$ is the quadratic approximation of $j(x)$ near $x=5$. Find a formula for $p(x)$.

Solution: We know that $p(x)=j(5)+j^{\prime}(5)(x-5)+\frac{j^{\prime \prime}(5)}{2}(x-5)^{2}$. Since $j(x)$ be an antiderivative of $f(x)$ then $j^{\prime}(5)=f(5)=0$ and $j^{\prime \prime}(5)=f^{\prime}(5)=-2$. Hence

Answer: $p(x)=3-(x-5)^{2}$.
f. [2 points] Find all the values of a with $-3 \leq a \leq 3$ such that $\int_{-2}^{a} f(x) d x=0$.

Solution:

Answer: $\quad a=-2,0,2$

