3. [14 points] Suppose f(x) is an even function. A piece of the graph of f(x) is given below. Note that f(x) is piecewise linear for $0 \le x \le 6$. Find the following quantities. If any of their values do not exist, write DNE. If there is not enough information to answer, write NI. y = f(x)

a. [1 point] Find
$$\lim_{p \to 4^+} f(p)$$
.
Solution:
Answer: 2

b. [2 points] Find $\lim_{m \to 0} \frac{f(1+m) - f(1)}{m}$.

c. [3 points] Let
$$g(x) = \frac{1}{\sqrt{4+f(2x)}}$$
. Find $g'(2.5)$.

Solution:

$$g'(x) = -\frac{1}{2}(4+f(2x))^{-\frac{3}{2}}(2f'(2x)) = -\frac{f'(2x)}{(4+f(2x))^{\frac{3}{2}}} \quad g'(2.5) = -\frac{f'(5)}{(4+f(5))^{\frac{3}{2}}} = -\frac{(-2)}{4^{\frac{3}{2}}} = \frac{1}{4}$$
Answer: $\frac{1}{4}$

d. [3 points] Recall that f(x) is even. Find $\int_{-3}^{1} (5f(t) - 3) dt$.

Solution:

$$\int_{-3}^{1} (5f(t) - 3) dt = 5 \left(\int_{-3}^{-1} f(t) dt + \int_{-1}^{1} f(t) dt \right) - \int_{-3}^{1} 3dt$$
$$= 5(-4.5 + 3) - 12 = -7.5 - 12 = -19.5.$$
Answer: -19.5

e. [3 points] Let j(x) be an antiderivative of f(x) with j(5) = 3. Suppose that p(x) is the quadratic approximation of j(x) near x = 5. Find a formula for p(x).

Solution: We know that $p(x) = j(5) + j'(5)(x-5) + \frac{j''(5)}{2}(x-5)^2$. Since j(x) be an antiderivative of f(x) then j'(5) = f(5) = 0 and j''(5) = f'(5) = -2. Hence

Answer:
$$p(x) = 3 - (x - 5)^2$$
.

f. [2 points] Find all the values of a with $-3 \le a \le 3$ such that $\int_{-2}^{a} f(x) dx = 0$.

Solution:

Answer: a = -2, 0, 2

-3

X

6 7 8

Answer:

 $2 \ 3$

-1-2-3