5. [7 points] Consider the family of functions $f(x)=b x^{5} e^{c x}$ with parameters b and c. Note that

$$
f^{\prime}(x)=b x^{4} e^{c x}(c x+5) \quad \text { and } \quad f^{\prime \prime}(x)=b x^{3} e^{c x}\left(c^{2} x^{2}+10 c x+20\right)
$$

a. [2 points] Find all values of b and c that make

$$
\lim _{x \rightarrow \infty} f(x)=\infty \quad \text { AND } \quad \lim _{x \rightarrow-\infty} f(x)=0
$$

Solution:
Conditions for $b: \quad b>0 \quad$ Conditions for $c: \quad c>0$
b. [5 points] Suppose $b>0$ and $c>0$. Find the critical point(s) of $f(x)$ and the x-coordinates of the local extrema of $f(x)$. Your answer must be in exact form and may be expressed in terms of the constants b and c. You should use calculus to find and justify your answers. For each answer blank below, write NONE if appropriate.
Solution: There are no points where $f^{\prime}(x)$ is undefined, so all of the critical points can be found by solving $f^{\prime}(x)=b x^{4} e^{c x}(c x+5)=0$. This yields $x=0$ and $x=-\frac{5}{c}$. We test the critical point $x=-\frac{5}{c}$ using the Second Derivative Test

$$
f^{\prime \prime}\left(-\frac{5}{c}\right)=b\left(-\frac{5}{c}\right)^{3} e^{-5}\left(c^{2}\left(-\frac{5}{c}\right)^{2}+10 c\left(-\frac{5}{c}\right)+20\right)=625 e^{-5} \frac{b}{c^{3}}>0
$$

Hence $x=-\frac{5}{c}$ is a local minimum.
We use the First Derivative Test to classify $x=0$. We need to test on the intervals $\left(-\frac{5}{c}, 0\right)$ and $(0, \infty)$. We use the points $x=-\frac{4}{c}$ and $x=1$.

$$
\begin{aligned}
f^{\prime}\left(-\frac{4}{c}\right) & =b\left(-\frac{4}{c}\right)^{4} e^{-4}\left(c\left(-\frac{4}{c}\right)+5\right)=b\left(\frac{256}{c^{4}}\right) e^{-4}>0 \\
f^{\prime}(1) & =b e^{c}(c+5) \quad \text { then } \quad f^{\prime}(1)=+(+)(+)=+
\end{aligned}
$$

Hence $x=0$ is neither a local maximum or a local minimum.

$$
\text { Critical point(s) at } x=0 \text { and } x=-\frac{5}{c}
$$

Local max(es) None
Local min(s) $x=-\frac{5}{c}$

