1. [9 points] The function \(f(x) \) is invertible and twice differentiable for all real numbers. The table to the right gives several values of \(f'(x) \), the derivative of \(f(x) \). You do not need to show work in this problem, but limited partial credit may be awarded for work shown.

\[
\begin{array}{c|cccc}
 x & -2 & 0 & 2 & 3 & 6 \\
 \hline
 f'(x) & 6 & 4 & 3 & 0 & 2 \\
\end{array}
\]

a. Compute each of the following values \textbf{exactly}. If there is not enough information, write \textbf{NEI}. If the value does not exist, write \textbf{DNE}.

i. [2 points] \(\lim_{k \to 0} \frac{f(-2 + k) - f(-2)}{k} \)

Answer:

ii. [2 points] Let \(h(x) = 3 \cos(x)f(x) \). Find \(h'(0) \).

Answer:

iii. [2 points] Let \(g(x) = f \left(\frac{6}{x} \right) \). Find \(g'(3) \).

Answer:

b. [1 point] Use the table to give the best possible estimate of \(f''(1) \).

Answer: \(f''(1) \approx \)

c. [2 points] Suppose that \(f(6) = 0 \). Write a formula for the linear approximation \(L(x) \) of \(f^{-1}(x) \), the inverse of \(f(x) \), at \(x = 0 \).

Answer: \(L(x) = \)

2. [6 points] Let \(P(h) \) be the current pressure, in millibars (mb), of the air above Ann Arbor at a height of \(h \) meters (m) above the ground.

Use a complete sentence to write a practical interpretation of each of the following equations.

a. [3 points] \(P'(6000) = -0.05 \)

b. [3 points] \(\int_0^{4000} P'(h) \, dh = -510 \)