11. [15 points] A function $h(x)$ is defined and continuous on $(-\infty, \infty)$. A portion of the graph of $h^{\prime}(x)$, the derivative of $h(x)$, is shown below. Note that $y=2$ is a horizontal asymptote of $y=h^{\prime}(x)$.

In each part a.-f. below, circle all correct choices.
a. [2 points] At which of the following value(s) does $h(x)$ have a critical point?

$$
x=-7 \quad x=-5 \quad x=0 \quad x=3 \quad \text { NONE OF THESE }
$$

b. [2 points] At which of the following value(s) does $h(x)$ have a local maximum?

$$
x=-6 \quad x=-4 \quad x=-2 \quad x=5 \quad \text { NONE OF THESE }
$$

c. [2 points] At which of the following value(s) does $h^{\prime \prime}(x)$ have a local maximum?

$$
x=-7 \quad x=-2 \quad x=5 \quad x=6 \quad \text { NONE OF THESE }
$$

d. [2 points] At which of the following value(s) does $h(x)$ have an inflection point?

$$
x=-6 \quad x=-2 \quad x=0 \quad x=3 \quad \text { NONE OF THESE }
$$

e. [2 points] On which of the following interval(s) is the average value of $h^{\prime}(x)$ positive?

$$
[-5,0] \quad[-4,-2] \quad[4,5] \quad \text { NONE OF THESE }
$$

f. [2 points] On which of the following interval(s) is the average rate of change of $h^{\prime}(x)$ positive?

$$
[-5,0] \quad[-4,-2] \quad[4,5] \quad \text { NONE OF THESE }
$$

g. [3 points] Find the following limits. If there is not enough information, write NEI. If a limit diverges to ∞ or $-\infty$ or if the limit does not exist for any other reason, write DNE.

$$
\lim _{x \rightarrow \infty} h(x)=\square \quad \lim _{x \rightarrow \infty} h^{\prime}(x)=
$$

\qquad

