8. [9 points] Given below is a table of values for a function g(x) and its derivative g'(x). The functions g(x), g'(x), and g''(x) are all defined and continuous for all real numbers.

x	-3	-2	0	2	3	4	6	8
g(x)	2	3	7	9	5	1	-5	-7
g'(x)	0	4	1	0	-2	-4	-1	-3

Assume that between consecutive values of x given in the table above, g(x) is either always increasing or always decreasing.

Find the quantities in **a.-c.** <u>exactly</u>, or write NEI if there is not enough information provided to do so. You do not need to show work, but limited partial credit may be awarded for work shown.

a. [1 point] $\int_3^6 g(x) dx$

b. [2 points] $\int_{-2}^{2} 3g'(x) \ dx$

c. [3 points] $\int_0^4 (g''(x) + x) dx$

Answer:

d. [2 points] Use a right-hand Riemann sum with three equal subdivisions to estimate $\int_2^8 g(x) dx$. Write out all the terms in your sum.

e. [1 point] Does the answer to part **d.** overestimate, underestimate, or equal the value of $\int_2^8 g(x) dx$? Circle your answer. If there is not enough information, circle NEI.

Answer:

OVERESTIMATE

UNDERESTIMATE

EQUAL

NEI