10. [7 points] Consider the continuous function

$$
f(x)=\left\{\begin{array}{lc}
-2-\ln (x+2) & -2<x \leq-1 \\
x 2^{-x} & x>-1
\end{array}\right.
$$

and its derivative

$$
f^{\prime}(x)=\left\{\begin{array}{lc}
-\frac{1}{x+2} & -2<x<-1 \\
2^{-x}(1-x \ln (2)) & x>-1 .
\end{array}\right.
$$

a. [2 points] Find all critical point(s) of $f(x)$. Write none if there are none.

Solution: We need to look for values of x where $f^{\prime}(x)$ is zero or undefined. We can see that the first piece of $f^{\prime}(x)$ is undefined at -2 , but that's not in the domain, so it is not a critical point. We can also solve to see that the second piece of $f^{\prime}(x)$ is zero when $x=\frac{1}{\ln (2)} \approx 1.443$, so this is in the domain and so a critical point.

We also can't forget that $f^{\prime}(-1)$ may not be defined because there is where the pieces meet. In fact, the piecewise function given for $f^{\prime}(x)$ isn't defined at $x=-1$. We can also check this by seeing that the two pieces of $f^{\prime}(x)$ are not equal when we plug in $x=-1$. (The first piece is -1 , while the second is $2(1+\ln (2))>0$, so $f(x)$ has a corner here.)

$$
\text { Answer: critical point(s) at } x=\quad-1, \frac{1}{\ln (2)}
$$

b. [5 points] Find the x-coordinate of all global maxima and global minima of $f(x)$ on its domain $(-2, \infty)$. For each, write none if there are none. You must use calculus to find your answers, and be sure to show enough evidence to fully justify your answers.

Solution: The critical points of $f(x)$ are $x=-1$, and $1 / \ln (2)$ as we found above. We are optimizing on the domain $(-2, \infty)$, so aside from the critical points, we also need to consider the behavior at the endpoints $x=-2$ and the limit as x goes to ∞.

$\lim _{x \rightarrow-2^{+}} f(x)$	$+\infty$
$f(-1)$	-2
$f(1 / \ln (2))$	≈ 0.53074
$\lim _{x \rightarrow \infty} f(x)$	0

The smallest output value is -2 , so $x=-1$ is the global minimum. Since $\lim _{x \rightarrow-2^{+}} f(x)=+\infty$, there is no global maximum

Answer: global max(es) at $x=$
NONE

Answer: global min(s) at $x=$ \qquad

