4. [7 points] Lin inflates a balloon using a helium pump. When she turns off the pump, the balloon immediately begins to deflate. Lin believes that she can model the balloon's volume, in cubic feet $\left(\mathrm{ft}^{3}\right)$, by the function

$$
V(t)=\frac{a t^{2}}{e^{b t}},
$$

where t is the time, in seconds, after she begins inflating the balloon, and where a and b are positive constants. As an example, this function is shown to the right for one choice of the constants a and b. Note that the derivative of $V(t)$ is given by

$$
V^{\prime}(t)=-\frac{a t(b t-2)}{e^{b t}}
$$

a. [4 points] The function $V(t)$ appears to have a local maximum at some time $t>0$. Find the time at which this local maximum occurs. Use calculus to find your answer, and be sure to give enough evidence that the point you find is indeed a local maximum. Your answer may be in terms of a and/or b.

Solution: The critical points of $V(t)$ are 0 and $2 / b$, and since b is positive, we know that $2 / b>0$. Below is a table showing the signs of $V^{\prime}(t)$ for $t>0$, with sign logic to justify how we know when $V^{\prime}(t)$ is positive and when it is negative. Note: a and $e^{b t}$ are always positive.

$$
\left.V^{V^{\prime}(t)} \underset{0}{(+) \frac{(+)(-)}{(+)}} \quad \frac{(-) \frac{(+)(+)}{(+)}}{(+)} \quad 2 / b \quad(-) \quad+\infty\right)
$$

By the first derivative test, $t=2 / b$ is a local maximum. (The second derivative test can also be used.)

Answer: local max at $t=\ldots 2 / b$
b. [3 points] Lin knows that it took 8 seconds to inflate the balloon, and that its volume at that time was $1.5 \mathrm{ft}^{3}$. Find the exact values of a and b for Lin's model. Show your work.
Solution: If Lin took 8 seconds to inflate the balloon, that means the local maximum we found in part (a) needs to occur at $t=8$. If $2 / b=8$, then $b=1 / 4$. The volume of the balloon at this time was $1.5 \mathrm{ft}^{3}$, which means

$$
1.5=V(8)=\frac{a(8)^{2}}{e^{(1 / 4)(8)}}
$$

Solving for a, we get $a=1.5 e^{2} / 64$.

$$
\text { Answer: } \quad a=\quad \frac{1.5 e^{2}}{64} \quad \text { and } b=\frac{1 / 4}{}
$$

