8. [9 points] Given below is a table of values for a function $g(x)$ and its derivative $g^{\prime}(x)$. The functions $g(x), g^{\prime}(x)$, and $g^{\prime \prime}(x)$ are all defined and continuous for all real numbers.

x	-3	-2	0	2	3	4	6	8
$g(x)$	2	3	7	9	5	1	-5	-7
$g^{\prime}(x)$	0	4	1	0	-2	-4	-1	-3

Assume that between consecutive values of x given in the table above, $g(x)$ is either always increasing or always decreasing.

Find the quantities in a.-c. exactly, or write NEI if there is not enough information provided to do so. You do not need to show work, but limited partial credit may be awarded for work shown.
a. $[1$ point $] \int_{3}^{6} g(x) d x$

Answer: \qquad
b. $[2$ points $] \int_{-2}^{2} 3 g^{\prime}(x) d x$

Solution: $3(g(2)-g(-2))=3(9-3)=18$
Answer:
18
c. [3 points] $\int_{0}^{4}\left(g^{\prime \prime}(x)+x\right) d x$

Solution:

$$
\begin{aligned}
\int_{0}^{4}\left(g^{\prime \prime}(x)+x\right) d x=\int_{0}^{4} g^{\prime \prime}(x) d x+\int_{0}^{4} x d x & =\left(g^{\prime}(4)-g^{\prime}(0)\right)+\left(\frac{(4)^{2}}{2}-\frac{(0)^{2}}{2}\right) \\
& =(-4-1)+8
\end{aligned}
$$

Answer:

d. [2 points] Use a right-hand Riemann sum with three equal subdivisions to estimate $\int_{2}^{8} g(x) d x$. Write out all the terms in your sum.
Solution: $\Delta x=(8-2) / 3=2$, so the Riemann sum is

$$
g(4) \cdot 2+g(6) \cdot 2+g(8) \cdot 2=2(1+(-5)+(-7))=-22
$$

e. [1 point] Does the answer to part d. overestimate, underestimate, or equal the value of $\int_{2}^{8} g(x) d x$? Circle your answer. If there is not enough information, circle NEI.

Answer: OVERESTIMATE UNDERESTIMATE EQUAL NEI

