© 2019 Univ. of Michigan Dept. of Mathematics (Creative Commons By-NC-SA license)

8. [9 points] Given below is a table of values for a function g(x) and its derivative g'(x). The functions g(x), g'(x), and g''(x) are all defined and continuous for all real numbers.

x	-3	-2	0	2	3	4	6	8
g(x)	2	3	7	9	5	1	-5	-7
g'(x)	0	4	1	0	-2	-4	-1	-3

Assume that between consecutive values of x given in the table above, g(x) is either always increasing or always decreasing.

Find the quantities in **a.-c. exactly**, or write NEI if there is not enough information provided to do so. You do not need to show work, but limited partial credit may be awarded for work shown.

a. [1 point]
$$\int_3^5 g(x) dx$$

•6

Answer: <u>NEI</u>

b. [2 points]
$$\int_{-2}^{2} 3g'(x) dx$$

Solution: $3(g(2) - g(-2)) = 3(9 - 3) = 18$

Answer:

3

c. [3 points]
$$\int_0^4 (g''(x) + x) dx$$

Solution:
 $\int_0^4 (g''(x) + x) dx = \int_0^4 g''(x) dx + \int_0^4 x dx = (g'(4) - g'(0)) + (\frac{(4)^2}{2} - \frac{(0)^2}{2})$
 $= (-4 - 1) + 8$

d. [2 points] Use a right-hand Riemann sum with three equal subdivisions to estimate $\int_2^8 g(x) dx$. Write out all the terms in your sum.

Solution: $\Delta x = (8-2)/3 = 2$, so the Riemann sum is

$$g(4) \cdot 2 + g(6) \cdot 2 + g(8) \cdot 2 = 2\left(1 + (-5) + (-7)\right) = -22$$

e. [1 point] Does the answer to part **d**. overestimate, underestimate, or equal the value of $\int_{2}^{8} g(x) dx$? Circle your answer. If there is not enough information, circle NEI.

Answer: OVERESTIMATE UNDERESTIMATE EQUAL NEI

page 8